1. 问题描述
给出一个二维的01矩阵,计算出包含1做多的方阵,并返回包含1的个数。
2. 方法与思路
利用动态规划的思想。以右下角基准,找出最大边长。状态转移方程如下:
dp[i][j] = min(d][i-1][j], dp[i][j-1], dp[i-1][j-1]) +1;
其中dp[i][j]表示以(i,j)为右下角的全1矩阵的最大边长。
class Solution {
public:
int minNum(int a, int b, int c)
{
int tmp = a < b?a:b;
return tmp < c?tmp:c;
}
int maximalSquare(vector<vector<char>>& matrix) {
int m,n,i,j,re=0;
if(matrix.size() == 0)
return 0;
m = matrix.size();
n = matrix[0].size();
int dp[m][n];
for(i = 0; i < m; i++)
for(j = 0; j < n; j++)
dp[i][j] = 0;
for(i = 0; i < m; i++)
{
for(j = 0; j < n; j++)
{
dp[i][j] = matrix[i][j] - '0';
if(i && j && dp[i][j])
{
dp[i][j] = minNum(dp[i-1][j],dp[i][j-1],dp[i-1][j-1]) + 1;
}
re = max(re,dp[i][j]);
}
}
return re*re;
}
};