如何根据event\marker将EEG数据的测试阶段和实验阶段分开

本文介绍了一种方法,通过寻找marker 88来区分EEG数据中的测试和实验阶段。在ERPlab中,首先加载数据,然后找到标记为88的事件并将其之后的所有事件flag设为1。接着,使用pop_selectevent函数筛选出flag为1(测试阶段)和0(实验阶段)的数据,并保存到不同的文件中。整个过程不会改变原始数据的长度,只是改变了事件标记。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设88是测试阶段的marker

而测试阶段和实验阶段共享一些marker

数据是连续记录的

为了建Bin的时候不把两个阶段的条件混在一起

在使用ERPlab建好eventlist后

对event和eventlist做如下修改

for i=1:size(setfiles,1)
    
EEG = pop_loadset('filename',setfiles(i).name,'filepath',setpaths{1});  
%找到第一个88出现的event序号,标志着测试部分开始
j=1
for e=1:size(EEG.event,2)
if EEG.event(e).type == 88
head(j)=e;
j=j+1;
end
end
clear j
%将第一个88后的所有event的flag改成1
for f=head(1):size(EEG.event,2)
EEG.event(f).flag = 1;
end

%提取flag为1的部分
EEG1 = pop_selectevent( EEG, 'flag',1,'deleteevents','on');
EEG1.EVENTLIST.eventinfo(1:head(1))=[];%将evetlist中实验部分event置空
EEG2 = pop_selectevent( EEG, 'flag',0,'deleteevents','on');
EEG2.EVENTLIST.eventinfo(head(1):size(EEG.event,2))=[];%将event

### 如何在EEG实验中使用Matlab进行标记(打Marker) 在EEG数据处理过程中,给特定事件添加时间戳标记是一项重要操作。这有助于后续分析时准确定位感兴趣的时间点或事件。通过MATLAB可以方便地实现这一功能。 #### 使用EEGLAB工具箱 对于大多数研究人员来说,推荐使用成熟的EEGLAB工具箱来管理EEG数据中的事件标记[^3]。该工具箱提供了直观易用的功能用于加载、查看以及编辑事件标签。 一旦安装并启动了EEGLAB环境之后: - **导入原始数据**:按照正常流程读取记录下来的脑电文件。 - **访问事件结构体**:每套EEGLAB数据集都包含了一个名为`EEG.event`的字段,它是一个由多个子域组成的数组,其中每个元素代表一个单独发生的事件。这些子域通常至少包括: - `latency`: 表示相对于采样起点的时间延迟; - `type`: 描述事件类型的字符串; - `duration`(可选): 如果适用的话,则指明持续多长时间。 为了创建新的标记,可以直接修改这个结构体的内容或将新条目追加进去。下面给出一段简单的例子展示如何手动插入自定义标记到现有数据集中去。 ```matlab % 假设已经有一个打开好的EEGLAB dataset对象 'EEG' newEvent.latency = 500; % 新增事件发生时刻为第500毫秒处 newEvent.type = 'Stimulus'; % 定义此事件类别为刺激呈现 newEvent.duration = []; % 不指定具体结束位置,默认瞬态事件 % 将新建event加入当前events列表末端 if isempty(EEG.event) EEG.event = newEvent; else EEG.event(end+1) = struct(newEvent); end % 更新内存里的dataset状态 eeg_checkset(EEG); % 可视化确认更改效果 pop_browseraw(); ``` 这段脚本展示了怎样向现有的EEG数据集中增加一个新的“刺激”类别的事件发生在相对起始时间为500ms的位置上。实际应用当中可能还需要考虑更多细节因素比如同步误差校正等问题。 #### 自动化批量标注 如果面对的是大量重复性的任务或者是需要基于某些算法自动检测特征点的情况,那么编写专门程序来进行自动化批处理将会大大提高效率。例如利用阈值法识别肌电伪迹或者根据视觉范式的固定模式预测目标出现时机等等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值