eeglab处理脑电信号(一)

这篇博客的内容是根据洪城脑科学课题组的视频记录的,感谢老师提供的学习资料和讲解。

一、导入脑电数据

原始脑电数据下有三个文件,.eeg,.vhdr,.vmrk,导入.vhdr格式的。导入后保存.set格式文件。

二、电极定位

  1. file->load existing dataset,选择第一步中的.set。
  2. edit->channel locations
    在这里插入图片描述
    默认使用的电极是标准的10_05系统
    如果做溯源分析选择mni,正常分析选择besa(结合ERP)
    在这里插入图片描述
    选择plot 2-D画图
    在这里插入图片描述
    一共64个电极只展示62个电极,有两个没有成功定位。HEO和VEO没有定位。完成,保存。

三、剔除无用电极

无用电极是指在整个脑电信号处理的过程中,没有用的电极,比如HEOG、VEOG、M1、M2。
edit->select data
在这里插入图片描饿述

四、滤波

由于50hz的干扰以及一些高频和低频的噪声的存在,预处理需要进行滤波。
脑电信号是复合信号,把脑电拆成不同频域的脑电,把其中50HZ的脑电去掉。
在这里插入图片描述
滤波通常有四种:低通滤波,高通滤波,带通滤波,带阻滤波。
在这里插入图片描述
wc是设置一个频率值,在设定的频率值开始衰减或者增强。

  1. 低通滤波:低于wc的开始衰减,30-100HZ
  2. 高通滤波:假设设定的值是1,将1处的设置为一半,后续的顺利通过,0.1-1HZ
  3. 带通滤波:前面设定一个值,后面设定一个值,中间的地方保留
  4. 带阻滤波:前面设定一个值,后面设定一个值,中间的地方肯定消失,49-51HZ/48-52HZ
    在这里插入图片描述
    带阻滤波一定要选Noth

五、降采样

采样率 = 采样点个数/单位时间
采一个点的时间=1/采样率
在这里插入图片描述
Frames per epoch:每一段有多少个采样点
sampling rate:采样率
epoch end(sec): 采样点从1开始,时刻点从0开始
在这里插入图片描述
在这里插入图片描述
只要采样率高于感兴趣频段的4倍以上,就能分析,所以脑电的采样率一般在250-1000HZ。降采样最大的好处是减小数据量,提高计算速度,不是必须的。

  1. Tool->Change sampling rate
  2. 设置新的采样率
    在这里插入图片描述
    降采样后的结果
    在这里插入图片描述

六、分段和基线矫正(ERP)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

1.分段

  1. tools->extract epochs
  2. 在脑电中,每给一个刺激,就会打一个marker,以下图为例,两个刺激编号10和20,如果反应是对的,编号200,反应错误编号100.
    在这里插入图片描述
    在这里插入图片描述
    如何去除错误分段,保留正确分段?
    edit->select epochs or events
    在这里插入图片描述

2.基线矫正

在这里插入图片描述
分段后的信息
在这里插入图片描述
画图
在这里插入图片描述

七、插值坏导和剔除坏段

1.插值坏导:Spehrical算法

  1. tools->interpolate electrodes

!](https://i-blog.csdnimg.cn/direct/0947cd8ab59a42cb86ad884dbcfe2207.png)

2.剔除坏段:直接删除

在这里插入图片描述
可以在matlab中查看是否选中了两段
在这里插入图片描述
这时候epoch变成98

八、重参考

重参考:在分析数据的时候,有时候需要转换参考电极的位置。常用的重参考方式有双侧乳突平均参考:将两个乳突数据的平均值作为参考数据,或者是全脑平均参考:将全脑所有数据的均值作为参考数据的方法。

  1. tools->re-reference the data
    在这里插入图片描述
    第一个全脑平均(32导以上),第二个双侧乳突(32导以下)。

九、独立成分分析 | ICA

独立成分分析的目的是去除眼电、心电等伪迹。使用ICA分解原始数据后,将分离的独立成分划分为伪迹相关成分和神经活动相关成分,剔除被标记为伪迹的相关成分。
在这里插入图片描述

  1. tools->decompose data by ICA
  2. 原来64个通道,现在60个,补上pca
    在这里插入图片描述

十、剔除伪迹和坏段

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1. 剔除伪迹

  1. tools->classify components using ICLabel->Label components
    在这里插入图片描述
    1:59是有59个成分,频率2-50,√将事件画出来,画出后的效果,点击下面序号可以查看
    在这里插入图片描述
    在这里插入图片描述
    分析每个事件的概率是多少,比如这个是97.8%的眼动
    新版ICALabel的功能:
  2. tools->classify components using ICLabel->flag components as artifacts(相当于做标记)
    在这里插入图片描述
    在这里插入图片描述
  3. tools->remove components from data

2. 剔除坏段

在这里插入图片描述
脑电信号主要是100毫伏,所以主要是去除超过100毫伏的

  1. tools->reject data epochs
    在这里插入图片描述
    手动检查
    使用 ‘Plot > Channel data(scroll)’ 选项
    逐个trial进行查看,如果发现有伪迹过大的trial想要剔除的话,单击该trial,它会变成黄色。选择完所有trials后,点击下方的 ‘Reject’ 即可。

由于我的matlab 2021b没有reject data epochs,然后在网上找到了一个很好的参考链接,分享给大家。MATLAB脑电数据处理精要

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值