一、下载安装cuda 9.0(必须是9.0 不能是9.1)
TensorFlow 有两个版本:CPU 版本和 GPU 版本。GPU 版本需要 CUDA 和 cuDNN 的支持,CPU 版本不需要。如果你要安装 GPU 版本,请先确认你的显卡支持 CUDA。我安装的是 GPU 版本,采用 pip 安装方式,所以就以 GPU 安装为例,CPU 版本只不过不需要安装 CUDA 和 cuDNN。
- 在 这里 确认你的显卡支持 CUDA。
- 确保你的 Python 版本是 3.5 64 位及以上。(TensorFlow 从 1.2 开始支持 Python 3.6,之前的官方是不支持的)
- 确保你有稳定的网络连接。
- 确保你的 pip 版本 >= 8.1。用
pip -V
查看当前pip
版本,用python -m pip install -U pip
升级pip
。 确保你安装了 VS2015 或者 2013 或者 2010。此条非必须,删除。
二、下载cuDNN 7.0 解压后将bin cudnn64_7.dll 添加到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin文件里
三、Python 3.5.2勾选安装pip
四、在系统命令行输入
pip install numpy
验证是否已安装pip , 经过一段运行时间后,提示你的pip需要更新到最新版本
按它所提示的“pipe --upgrade...”输入即可(我忘记了)
五、安装tensorflow
继续在系统命令行输入
# GPU版本 pip3 install --upgrade tensorflow-gpu
# CPU版本 pip3 install --upgrade tensorflow
安装完成!
六、测试
打开Python 输入以下命令:
>>>import tensorflow as tf
>>>a=tf.constant([1.0,2.0],name="a")
>>>b=tf.constant([2.0,3.0],name="b")
>>>result=a+b
>>>sess=tf.Session()
>>>sess.run(result)
注:要输出相加得到的结果,不能简单地直接输出result,而是需要先生成一个会话(Session),并通过这个会话来计算结果。