TensorFlow环境搭建

一、下载安装cuda 9.0(必须是9.0 不能是9.1)

TensorFlow 有两个版本:CPU 版本和 GPU 版本。GPU 版本需要 CUDA 和 cuDNN 的支持,CPU 版本不需要。如果你要安装 GPU 版本,请先确认你的显卡支持 CUDA。我安装的是 GPU 版本,采用 pip 安装方式,所以就以 GPU 安装为例,CPU 版本只不过不需要安装 CUDA 和 cuDNN。

  1. 在 这里 确认你的显卡支持 CUDA。
  2. 确保你的 Python 版本是 3.5 64 位及以上。(TensorFlow 从 1.2 开始支持 Python 3.6,之前的官方是不支持的)
  3. 确保你有稳定的网络连接。
  4. 确保你的 pip 版本 >= 8.1。用 pip -V 查看当前 pip 版本,用 python -m pip install -U pip 升级pip 。
  5. 确保你安装了 VS2015 或者 2013 或者 2010。此条非必须,删除。

二、下载cuDNN 7.0 解压后将bin cudnn64_7.dll 添加到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin文件里 


三、Python  3.5.2勾选安装pip

四、在系统命令行输入

pip install numpy

验证是否已安装pip , 经过一段运行时间后,提示你的pip需要更新到最新版本

按它所提示的“pipe --upgrade...”输入即可(我忘记了)

五、安装tensorflow

继续在系统命令行输入

# GPU版本 pip3 install --upgrade tensorflow-gpu

# CPU版本 pip3 install --upgrade tensorflow


安装完成!

六、测试

打开Python 输入以下命令:

>>>import tensorflow as tf

>>>a=tf.constant([1.0,2.0],name="a")

>>>b=tf.constant([2.0,3.0],name="b")

>>>result=a+b

>>>sess=tf.Session()

>>>sess.run(result)


注:要输出相加得到的结果,不能简单地直接输出result,而是需要先生成一个会话(Session),并通过这个会话来计算结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值