hdu 1576 乘法逆元(入门)

点击打开链接

定义:
满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元。


为什么要有乘法逆元呢?
当我们要求(a/b) mod p的值,且a很大,无法直接求得a/b的值时,我们就要用到乘法逆元。
我们可以通过求b关于p的乘法逆元k,将a乘上k再模p,即(a*k) mod p。其结果与(a/b) mod p等价。


证:(其实很简单。。。)
根据b*k≡1 (mod p)有b*k=p*x+1。
k=(p*x+1)/b。
把k代入(a*k) mod p,得:
(a*(p*x+1)/b) mod p
=((a*p*x)/b+a/b) mod p
=[((a*p*x)/b) mod p +(a/b)] mod p
=[(p*(a*x)/b) mod p +(a/b)] mod p
//p*[(a*x)/b] mod p=0
所以原式等于:(a/b) mod p

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const long M=9973;
long x,y;
long gcd(long a,long b)
{
	if(a%b==0)
	return b;
	else
	{
		return gcd(b,a%b);
	}
}
void exgcd(long a,long b)
{
	if(b==0)
	{
		x=1;
		y=0;
	}
	else
	{
		exgcd(b,a%b);
		int tmp;
		tmp=x;
		x=y;
		y=tmp-(a/b)*y;
		
	}
}
int main()
{
	int t;
	cin>>t;
	while(t--)
	{
		long long n,b;
		cin>>n>>b;
		//n=A%M  gcd(b,M)=1; 求(A/b)%M
		//k为b关于模M的逆元 b*k≡1 (mod M)
		//根据b*k≡1 (mod p)有b*k=p*x+1。
		//k=(p*x+1)/b。
		//k代入(A*k)%M 得(A*k)%M 价于(A/b)%M	
		exgcd(b,M);
		long d=gcd(b,M);
		int i=1;
		//通解为 
		//x=x0+(b/d)*n	 y=y0-(a/d)*n	
		while(x<0)
		{
			x+=(M/d)*i;
		}		
		//n=A%M ->  A=M*k+n 
		//(a + b) % p = (a % p + b % p) % p
		//(a * b) % p = (a % p * b % p) % p模运算法则 可以用同余进行简单证明.. 
		//((M*k+n)*x)%M =(n*x)%M
		cout<<(n*x)%M<<endl;		
	}
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值