乘法逆元详解(费马小定理与拓展欧几里得)

什么是乘法逆元?

对于整数a,m,如果满足gcd(a,m)=1,怎必定存在x使得ax\equiv 1(mod m),那么x称为a对m的乘法逆元。

乘法逆元的用途?

对于除法取模(b/a)%m,由于不存在公式(b/a)%m=(b%m)/(a%m),所以必须先计算b/a再取模,但是当a很大是会造成b/a爆精度。乘法逆元的作用就是将这个除法取模变成乘法取模,有(b/a)%m=b*x%m=b%m*x%m,其中x为a对m的乘法逆元。

乘法逆元的计算方式

1.费马小定理(m必须为质数)

费马小定理:a^(p-1)≡1(mod p)其中p为质数。

对于a的逆元x有ax\equiv 1(mod m),同时根据飞马小定理又有a^(m-1)≡1(mod m),因此有ax=a^(m-1),故x=a^(m-2)。利用快速幂可在logn时间内求出a对m的逆元。

2.扩展欧几里得

费马小定理只能用于m为质数时,所以必须寻求一般的方法。对于ax\equiv 1(mod m),可以等价为ax=km+1,那么有ax-km=1,我们令-m=y,则有ax+my=1。因此我们只要寻找到这个方程的解x,y其中x即为a对m的乘法逆元。该方程可用拓展欧几里得算法求解。拓展欧几里得算法如下:

基本算法:对于不完全为 0 的非负整数 a,m,gcd(a,m)表示 a,m 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,m)=ax+my。

我们观察到:欧几里德算法停止的状态是: a= gcd , b = 0 ,那么,这是否能给我们求解 x y 提供一种思路呢?因为,这时候,只要 a = gcd 的系数是 1 ,那么只要 b 的系数是 0 或者其他值(无所谓是多少,反正任何数乘以 0 都等于 0 但是a 的系数一定要是 1),这时,我们就会有: a*1 + m*0 = gcd

当然这是最终状态,但是我们是否可以从最终状态反推到最初的状态呢?

假设当前我们要处理的是求出 a 和 b的最大公约数,并求出 x 和 y 使得 a*x + m*y= gcd ,而我们已经求出了下一个状态:b 和 a%m 的最大公约数,并且求出了一组x1 和y1 使得: m*x1 + (a%m)*y1 = gcd , 那么这两个相邻的状态之间是否存在一种关系呢?

我们知道: a%m= a - (a/m)*m(这里的 “/” 指的是整除,例如 5/2=2 , 1/3=0),那么,我们可以进一步得到:

        gcd = m*x1 + (a-(a/m)*m)*y1

               = m*x1 + a*y1 – (a/m)*m*y1

               = a*y1 + m*(x1 – a/m*y1)

    对比之前我们的状态:求一组 x 和 y 使得:a*x + b*y = gcd ,是否发现了什么?

    这里:

        x = y1

        y = x1 – a/m*y1

    以上就是扩展欧几里德算法的全部过程。算法实现如下

int exgcd(int a,int m,int &x,int &y)
{
    if(m==0)
    {
        x=1;
        y=0;
        return a;
    }
    int ans=exgcd(m,a%m,x,y);
    int t=x;
    x=y;
    y=t-a/m*y;
    return ans;
}

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值