参考:点击打开链接
枚举a,利用x1,x3求出b,判断所有x的关系能不能满足a,b。
如何通过a,x1,x3求出b呢。
x2 = (a * x1 + b) % 10001;
x3 = (a * x2 + b) % 10001;
联立2个式子
x3 = (a * (a * x1 + b) % 10001 + b ) % 10001;
x3 = (a * (a * x1 + b) + b) % 10001;
所以 x3 + 10001 * k = a * a * x1 + (a + 1) * b;
x3 - a * a * x1 = (a + 1) * b + 10001 * (-k);
即可以利用exgcd 求 b 和 -k,
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef unsigned long long ll;
const ll mod=1e4+1;
const int N=1e4+20;
ll x[N];
int n;
void exgcd(ll a,ll b,ll &d,ll &x,ll &y){
if(!b){
d=a;
x=1;y=0;
return;
}
else {
exgcd(b, a%b, d, y, x);
y -= x * (a/b);
return ;
}
}
bool check(ll a,ll b)
{
for(int i=2;i<=2*n;i++)
{
if(i%2)
{
if(x[i]!=(a*x[i-1]+b)%mod)//矛盾(a,b)非法
{
return false;
}
}
else
x[i]=(a*x[i-1]+b)%mod;
}
return true;
}
int main()
{
while(cin>>n)
{
for(int i=1;i<=2*n-1;i+=2)
{
cin>>x[i];
}
//xi=(a(xi-1)+b)%mod (0<=a,b<=1e4)
//给出x1,x3,...x2n-1 求x2,x4..x2n
bool flag=false;
for(int a=0;a<=1e4;a++)//枚举a 已知x1,x3可以利用exgcd求出b 判断当前a,b是否可行即可
{
// x3 - a * a * x1 = (a + 1) * b + 10001 * (-k);
ll t=x[3]-a*a*x[1];
ll k,d,b;
exgcd(mod,a+1,d,k,b);
if(t%d)
continue;
b=b*t/d;//???
if(check(a,b))
{
break;
}
}
for(int i=2;i<=2*n;i+=2)
{
cout<<x[i]<<endl;
}
}
return 0;
}