uva 12169 exgcd+构造

点击打开链接

参考:点击打开链接

枚举a,利用x1,x3求出b,判断所有x的关系能不能满足a,b。

如何通过a,x1,x3求出b呢。
x2 = (a * x1 + b) % 10001;
x3 = (a * x2 + b) % 10001;
联立2个式子
x3 = (a * (a * x1 + b) % 10001 + b ) % 10001;
x3 = (a * (a * x1 + b) + b) % 10001;
所以 x3 + 10001 * k = a * a * x1 + (a + 1) * b;
x3 - a * a * x1 = (a + 1) * b + 10001 * (-k);
即可以利用exgcd 求 b 和 -k,



#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef unsigned long long ll;
const ll mod=1e4+1;
const int N=1e4+20;
ll x[N];
int n;

void exgcd(ll a,ll b,ll &d,ll &x,ll &y){  
    if(!b){  
        d=a;  
        x=1;y=0;  
        return;  
    }  
    else {  
        exgcd(b, a%b, d, y, x);  
        y -= x * (a/b);  
        return ;  
    }  
}  
bool check(ll a,ll b)
{
	for(int i=2;i<=2*n;i++)
	{
		if(i%2)
		{
			if(x[i]!=(a*x[i-1]+b)%mod)//矛盾(a,b)非法 
			{
				return false;
			}
		}
		else
		x[i]=(a*x[i-1]+b)%mod;
	}
	return true;
}
int main()
{
	while(cin>>n)
	{
		for(int i=1;i<=2*n-1;i+=2)
		{
			cin>>x[i];
		}
		//xi=(a(xi-1)+b)%mod (0<=a,b<=1e4)
		//给出x1,x3,...x2n-1 求x2,x4..x2n
		bool flag=false;
		for(int a=0;a<=1e4;a++)//枚举a 已知x1,x3可以利用exgcd求出b 判断当前a,b是否可行即可 
		{
			//	x3 - a * a * x1 = (a + 1) * b + 10001 * (-k);
			ll t=x[3]-a*a*x[1];
			ll k,d,b;
			exgcd(mod,a+1,d,k,b);
			if(t%d)
			continue;
			
			b=b*t/d;//???
			if(check(a,b))
			{
				break;
			}
		}
		for(int i=2;i<=2*n;i+=2)
		{
			cout<<x[i]<<endl;
		}
		 
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值