SPFA:动态逼近法
定理:只要最短路径存在,上述SPFA算法必定能求出最小值。
证明:每次将点放入队尾,都是经过松弛操作达到的。换言之,每次的优化将会有某个点v的最短路径估计值d[v]变小。所以算法的执行会使d越来越小。由于我们假定图中不存在负权回路,所以每个结点都有最短路径值。因此,算法不会无限执行下去,随着d值的逐渐变小,直到到达最短路径值时,算法结束,这时的最短路径估计值就是对应结点的最短路径值。
题意:给定节点数n,和边数m,边是有向边,问从1->i和,i->1的路程和最小值。
SPFA求出源点s到i的最短路径,
单源终点最短路时,(有向图)求i->源点s的最短路
使原图的边全部反向,得到反向图,反向图中s->i的路径都对应了原图i->s的路径
则反向图s-i的最短路对应原图i->s的最短路
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cstdio>
#include <queue>
using namespace std;
typedef pair<int,int> ii;
typedef long long ll;
const int N=1e6+20;
const ll inf=1e9;
vector<pair<int,int> > e[N];
int d[N],inq[N],n;
int a[N][4];
int SPFA(int s)
{
fill(d,d+n+1,inf);
memset(inq,0,sizeof(inq));
queue<int> q;
d[s]=0;
q.push(s);
inq[s]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
inq[u]=0;
for(int i=0;i<e[u].size();i++)
{
int v=e[u][i].first;
int w=e[u][i].second;
if(d[v]>d[u]+w)
{
d[v]=d[u]+w;
if(!inq[v])
{
q.push(v);
inq[v]=1;
}
}
}
}
}
int main()
{
int t;
cin>>t;
while(t--)
{
int m;
cin>>n>>m;
for(int i=1;i<=m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
e[u].push_back(make_pair(v,w));
a[i][0]=v,a[i][1]=u,a[i][2]=w;//保存反向边
}
ll ans=0;
SPFA(1);
for(int i=1;i<=n;i++)//源点到i的最短路
{
ans+=d[i];
e[i].clear();
}
//(有向图)i->源点s的最短路
//使原图的边全部反向,反向图中s->i的路径都对应了原图i->s的路径
//则反向图s-i的最短路对应原图i->s的最短路
for(int i=1;i<=m;i++)
{
e[a[i][0]].push_back(make_pair(a[i][1],a[i][2]));
}
SPFA(1);
for(int i=1;i<=n;i++)
{
ans+=d[i];
}
printf("%I64d\n",ans);
for(int i=1;i<=n;i++)
{
e[i].clear();
}
}
return 0;
}