Hackerrank (70)Range Modular Query 莫队+暴力

点击打开链接

题意:给出n个数,q次询问,q:给出l,r,x,y问[l,r]内ai=kx+y的个数.n,q,x,y,ai<=4e4;
n次询问,根据x,更新出ai,ai=kx+y的复杂度为nlogn 
由于ai要在[l,r]内,离线后,利用莫队更新[l,r]内ai出现的次数,总的时间复杂度为O(n*sqrt(n)*logn)) 

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
const int N=2e5+20;
const int M=4e4;
int n,Q,a[N];
int l,r,x,y;
int pos[N];
struct node{
	int l,r,x,y,id;
	int ans;
}q[N];
int mp[N];
bool cmp(node a,node b)
{
	if(pos[a.l]==pos[b.l])
		return a.r<b.r;
	return a.l<b.l;
}
bool cmp_id(node a,node b)
{
	return a.id<b.id;
}
void init()
{
	memset(mp,0,sizeof(mp));
	int block=(int)sqrt(n);
	for(int i=1;i<=n;i++)
		pos[i]=(i-1)/block+1;
}
void update(int p,int add)
{
	mp[a[p]]+=add;
}
void solve()
{
	for(int i=0,l=1,r=0;i<Q;i++)
	{
		for(;r<q[i].r;r++)
			update(r+1,1);
		for(;r>q[i].r;r--)
			update(r,-1);
		for(;l<q[i].l;l++)
			update(l,-1);
		for(;l>q[i].l;l--)
			update(l-1,1); 
		int ans=0;
		for(int k=0;k<=M;k+=q[i].x)
			ans+=mp[k+q[i].y];
		q[i].ans=ans;
	}
}
int main()
{
	while(cin>>n>>Q)
	{
		for(int i=1;i<=n;i++)
			scanf("%d",&a[i]);		
		init();
		for(int i=0;i<Q;i++)
		{
			scanf("%d%d%d%d",&q[i].l,&q[i].r,&q[i].x,&q[i].y);
			q[i].l++,q[i].r++;
			q[i].id=i;
		}
		sort(q,q+Q,cmp);
		solve();
		sort(q,q+Q,cmp_id);
		for(int i=0;i<Q;i++)
			printf("%d\n",q[i].ans);
	}
	return 0;
}

莫队算法:
将1~n分块
将询问离线处理,对于左端点在同一块中的按照右端点的大小排序,右端点较小的在前;
对于左端点不在同一块中的,按照左端点所在块大小排序,左端点较小的在前面;
这样排序之后,我们将排序后的区间从前往后计算,询问区间之间转移时只需要添加进来新的点和删除多余的点

莫队时间复杂度证明(最好有一些莫队的基础):

0.首先我们知道在转移一个单位距离的时候时间复杂度是O(1)

1:对于左端点在同一块中的询问:
右端点转移的时间复杂度是O(n),一共有√n块,所以右端点转移的时间复杂度是O(n√n)
左端点每次转移最差情况是O(√n),左端点在块内会转移n次,左端点转移的时间复杂度是O(n√n);

2:对于左端点跨越块的情况:
会跨区间O(√n)次;
左端点的时间复杂度是O(√n*√n)=O(n)可以忽略不计
右端点因为在跨越块时是无序的,右端点跨越块转移一次最差可能是O(n),可能跨越块转移√n次,所以时间复杂度是O(n√n)

所以总的来说莫队的时间复杂度是O(n√n);


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值