题意:n<=1e5个数,要求选出k个数使得相与之和最大,并输出and之和最大方案数
选出k个并之和最大,贪心:从二进制高位开始考虑,当前位为i
若n个数中第i位为1的个数>=k,则最大值的第i位肯定为1,把第k位为0的数淘汰掉,使得剩下元素任选k个都能得到最大值
若n个数中第i位为1的个数<k,则最大值第i位肯定为0,继续查看下一位.
最后剩下n'个数,则从中任意选k个都可以得到最大值 方案为C(n',k)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
const int N=2e5+20;
ll a[N],n,k;
int in[N];
ll powmod(ll x,ll n)
{
ll s=1;
while(n)
{
if(n&1)
s=(s*x)%mod;
x=(x*x)%mod;
n>>=1;
}
return s%mod;
}
ll C(int n,int k)
{
ll x=1,y=1;
for(ll i=1;i<=k;i++)
{
x=(x*(n-i+1))%mod;
y=(y*i)%mod;//除法取模
}
return (x*powmod(y,mod-2))%mod;
}
int main()
{
while(cin>>n>>k)
{
ll ans=0,m=0;
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]),in[i]=1;
for(ll i=63;i>=0;i--)//从高位开始
{
int cnt=0;
ll t=((ll)1<<i);
for(int j=1;j<=n;j++)
{
if(in[j])
{
if(a[j]&t)
cnt++;
}
}
if(cnt>=k)
{
ans+=t;
for(int j=1;j<=n;j++)
{
if(in[j])
{
if((a[j]&t)==0)//淘汰 使得剩下元素任选k个都能得到最大值
in[j]=0,m++;
}
}
}
}
cout<<ans<<endl;
n-=m;//remaining element
cout<<C(n,k)<<endl;
}
return 0;
}