题意:n个数a[i],找到最长的一段区间[l,r],存在l<=j<=r 满足a[l],a[l+1]...a[r]都能被a[j]整除
如果最大长度有多个,输出所有开头. n<=3e5,a[i]<=1e6
法1:
枚举a[j] 处理出a[j]的左右边界即可.
因为a|b b|c 所以a|c 用单调栈处理边界 O(n)
法2:
[l,r]中的a[j]为 min(a[l],a[l+1]..a[r]) 要和gcd(a[l]..a[r]) 相等
预处理出min和gcd的 ST表,二分长度,O(n)判断即可 O(nlogn).
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double eps=1e-10;
const int inf=0x3f3f3f3f;
const int N=5e5+20;
stack<int> s;
int n,a[N],l[N],r[N],f[N];
map<int,int> mp;
vector<int> ans;
int main()
{
while(cin>>n)
{
mp.clear();
ans.clear();
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
while(!s.empty()&&a[i]%a[s.top()])
{
r[s.top()]=i-1;
s.pop();
}
s.push(i);
}
while(!s.empty())
r[s.top()]=n,s.pop();
for(int i=n;i>=1;i--)
{
while(!s.empty()&&a[i]%a[s.top()])
{
l[s.top()]=i+1;
s.pop();
}
s.push(i);
}
while(!s.empty())
l[s.top()]=1,s.pop();
int mx=0;
for(int i=1;i<=n;i++)
{
f[i]=r[i]-l[i];
mx=max(mx,f[i]);
//cout<<l[i]<<' '<<r[i]<<endl;
}
for(int i=1;i<=n;i++)
if(f[i]==mx&&!mp[l[i]])
ans.push_back(l[i]),mp[l[i]]=1;
cout<<ans.size()<<' '<<mx<<endl;
for(int i=0;i<ans.size();i++)
printf("%d ",ans[i]);
printf("\n");
}
return 0;
}
法2代码转自 点击打开链接
#include "cstdio"
#include "iostream"
#include "vector"
#include "algorithm"
#include "math.h"
#include "cstring"
using namespace std;
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define maxn 3*100005
#define maxp 20
template <class T>
inline bool read(T &ret)
{
char c;
int sgn;
if(c=getchar(),c==EOF) return 0; //EOF
while(c!='-'&&(c<'0'||c>'9')) c=getchar();
sgn=(c=='-')?-1:1;
ret=(c=='-')?0:(c-'0');
while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
ret*=sgn;
return 1;
}
int gcd(int a,int b) {if(b!=0) return gcd(b,a%b);else return a;}
int RMQ[maxn][maxp],GCD[maxn][maxp],val[maxn],n,cnt,range;
vector<int> ans;
void ST()
{
for(int i=1;i<=n;i++) RMQ[i][0]=GCD[i][0]=val[i];
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i+(1<<j)-1<=n;i++)
{
RMQ[i][j]=min(RMQ[i][j-1],RMQ[i+(1<<(j-1))][j-1]);
GCD[i][j]=gcd(GCD[i][j-1],GCD[i+(1<<(j-1))][j-1]);
}
}
bool Query(int L,int R)
{
int k=0;
while((1<<(k+1))<=R-L+1) k++;
int a=min(RMQ[L][k],RMQ[R-(1<<k)+1][k]);
int b=gcd(GCD[L][k],GCD[R-(1<<k)+1][k]);
if(a==b) return true;
else return false;
}
bool judge(int v) //枚举r-l
{
int cc=0;
vector<int> tt;
for(int i=1; v+i<=n; i++)
{
if(Query(i,i+v)) //L=i,R=i+v;
{
cc++;
tt.push_back(i);
}
}
if(cc>0)
{
ans=tt;
cnt=cc;
range=v;
return true;
}
return false;
}
int main()
{
memset(RMQ,1,sizeof(RMQ));
memset(GCD,1,sizeof(GCD));
read(n);
for(int i=1; i<=n; i++)
read(val[i]);
ST();
int l=0,r=n-1,mid;
while(l<=r) //二分
{
mid=(l+r)>>1;
if(judge(mid)) l=mid+1;
else r=mid-1;
}
printf("%d %d\n",cnt,range);
for(int i=0;i<ans.size();i++) {if(i>0) printf(" ");printf("%d",ans[i]);};
printf("\n");
}