题意:区间每个数异或X,区间求和,n,m<=1e5,a[i]<=1e6.
开20个线段树,第i个维护[l,r]内第i位为1的个数即可,ans+=(1<<i)*query(1,i,l,r) i=1~20. O(20*m*logn)
lazy标记偶数次时为0.
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll,ll> ii;
const int N=1e5+20;
const ll inf=2e15;
ll n,m,a[N];
struct node{
int l,r;
int mid()
{
return (l+r)>>1;
}
ll sum,lz;
}t[25][N<<2];
void push_up(int rt,int id)
{
t[id][rt].sum=t[id][rt<<1].sum+t[id][rt<<1|1].sum;
}
void push_down(int rt,int id)
{
if(t[id][rt].lz==1)
{
t[id][rt].lz=0;
t[id][rt<<1].lz^=1;
t[id][rt<<1|1].lz^=1;
t[id][rt<<1].sum=t[id][rt<<1].r-t[id][rt<<1].l+1-t[id][rt<<1].sum;
t[id][rt<<1|1].sum=t[id][rt<<1|1].r-t[id][rt<<1|1].l+1-t[id][rt<<1|1].sum;
}
}
void build(int rt,int l,int r,int id)
{
t[id][rt].l=l,t[id][rt].r=r;
if(l==r)
{
ll val=0;
if((a[l]>>id)&1)
val++;
t[id][rt].sum=val;
// cout<<rt<<" "<<val<<endl;
t[id][rt].lz=0;
return;
}
int m=t[id][rt].mid();
build(rt<<1,l,m,id);
build(rt<<1|1,m+1,r,id);
push_up(rt,id);
}
void update(int rt,int id,int ql,int qr)
{
int l=t[id][rt].l,r=t[id][rt].r;
if(ql<=l&&qr>=r)
{
t[id][rt].sum=r-l+1-t[id][rt].sum;
t[id][rt].lz^=1;//·´×ªÅ¼´Î²»±ä
return;
}
push_down(rt,id);
int m=t[id][rt].mid();
if(ql<=m)
update(rt<<1,id,ql,qr);
if(qr>m)
update(rt<<1|1,id,ql,qr);
push_up(rt,id);
}
ll query(int rt,int id,int ql,int qr)
{
int l=t[id][rt].l,r=t[id][rt].r;
if(ql<=l&&qr>=r)
return t[id][rt].sum;
push_down(rt,id);
ll ans=0;
int m=t[id][rt].mid();
if(ql<=m)
ans+=query(rt<<1,id,ql,qr);
if(qr>m)
ans+=query(rt<<1|1,id,ql,qr);
return ans;
}
int main()
{
while(cin>>n)
{
for(int i=1;i<=n;i++)
scanf("%I64d",&a[i]);
for(int i=0;i<=22;i++)
build(1,1,n,i);
scanf("%d",&m);
while(m--)
{
int op,l,r,x;
scanf("%d%d%d",&op,&l,&r);
if(op==1)
{
ll ans=0;
for(int i=0;i<=22;i++)
ans+=query(1,i,l,r)*(1ll<<i);
printf("%I64d\n",ans);
}
else
{
scanf("%d",&x);
for(int i=0;i<=22;i++)
{
if((x>>i)&1)
update(1,i,l,r);
}
}
}
}
return 0;
}
题意:n个数,m个操作.op1:求区间和,op2:区间每个数mod x,op3:令a[k]=x.
n,m<=1e5,a[i]<=1e9 回答每个op1.
关键:一个数x%a 则x至多变为一半 即x=ka+r r<=x/2.每个数最多被更新loga[i]次 (r<2r/2<ka+r/2<x/2)
xmoda a>x时 x不变 则区间最大值<a时,cut不更新,则单点操作总次数为nloga[i]次
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll,ll> ii;
const int N=2e5+20;
const ll inf=2e15;
ll n,m,a[N];
ll sum[N<<2],mx[N<<2];
void push_up(int rt)
{
mx[rt]=max(mx[rt<<1],mx[rt<<1|1]);
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void build(int rt,int l,int r)
{
if(l==r)
{
sum[rt]=mx[rt]=a[l];
return;
}
int m=(l+r)>>1;
build(rt<<1,l,m);
build(rt<<1|1,m+1,r);
push_up(rt);
}
ll query(int rt,int l,int r,int ql,int qr)
{
if(l>=ql&&r<=qr)
return sum[rt];
int m=(l+r)>>1;
ll ans=0;
if(ql<=m) ans+=query(rt<<1,l,m,ql,qr);
if(qr>m) ans+=query(rt<<1|1,m+1,r,ql,qr);
return ans;
}
void setVal(int rt,int l,int r,int pos,int x)
{
if(l==r)
{
sum[rt]=mx[rt]=x;
return;
}
int m=(l+r)>>1;
if(pos<=m)
setVal(rt<<1,l,m,pos,x);
else
setVal(rt<<1|1,m+1,r,pos,x);
push_up(rt);
}
void modulo(int rt,int l,int r,int ql,int qr,int x)
{
if(l==r)
{
sum[rt]%=x;
mx[rt]=sum[rt];
return;
}
int m=(l+r)>>1;
if(ql<=m&&mx[rt<<1]>=x)
modulo(rt<<1,l,m,ql,qr,x);
if(qr>m&&mx[rt<<1|1]>=x)
modulo(rt<<1|1,m+1,r,ql,qr,x);
push_up(rt);
}
int main()
{
while(cin>>n>>m)
{
for(int i=1;i<=n;i++)
scanf("%I64d",&a[i]);
build(1,1,n);
while(m--)
{
int op,l,r,k,x;
scanf("%d",&op);
if(op==1)
{
scanf("%d%d",&l,&r);
printf("%I64d\n",query(1,1,n,l,r));
}
else if(op==2)
{
scanf("%d%d%d",&l,&r,&x);
modulo(1,1,n,l,r,x);
}
else
{
scanf("%d%d",&k,&x);
setVal(1,1,n,k,x);
}
}
}
return 0;
}