【动态规划】【图论】[NOIP模拟赛]独立集

本文介绍了顺旺基通过冒泡排序生成无向图的算法,并探讨如何找到这种图的最大独立集。关键在于理解最大独立集与最长上升子序列的关系,以及如何确定某些点必然属于所有最大独立集中。通过分析最长下降子序列和最长上升子序列的特性,可以解决这一问题。
摘要由CSDN通过智能技术生成

题目描述:
有一天,一个名叫顺旺基的程序员从石头里诞生了。又有一天,他学会了冒泡排序和独 立集。在一个图里,独立集就是一个点集,满足任意两个点之间没有边。于是他就想把这两 个东西结合在一起。众所周知,独立集是需要一个图的。那么顺旺基同学创造了一个算法, 从冒泡排序中产生一个无向图。

这个算法不标准的伪代码如下:

void bubblesortgraph(n,a[])

//输入:点数n,1到n的全排列a

//输出:一个点数为n的无向图G

{ 创建一个有n个点,0条边的无向图G。

do{ swapped=false

for i 从1 到n-1

if(a[i]>a[i+1])

{ 在G中连接点a[i]和点a[i+1]

交换a[i]和a[i+1]

swapped =true

}

}while(swapped);

输出图G。

}

//结束。

那么我们要算出这个无向图G最大独立集的大小。但是事情不止于此。顺旺基同学有时 候心情会不爽,这个时候他就会要求你再回答多一个问题:最大独立集可能不是唯一的,但 有些点是一定要选的,问哪些点一定会在最大独立集里。今天恰好他不爽,被他问到的同学 就求助于你了。

首先可以发现一定是在当前序列中的最长上升子序列,但是怎么才能判断当前数字一定在所有的最长上升子序列中呢?可以判断(以当前为开始的向左边的最长下降子序列,以当前为开始的向右的最长上升子序列)的二元组是唯一的否则一定有另一个可以替换,弄两次最长上升子序列就行了,具体的优化方法自己百度吧

输入

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值