题目描述:
有一天,一个名叫顺旺基的程序员从石头里诞生了。又有一天,他学会了冒泡排序和独 立集。在一个图里,独立集就是一个点集,满足任意两个点之间没有边。于是他就想把这两 个东西结合在一起。众所周知,独立集是需要一个图的。那么顺旺基同学创造了一个算法, 从冒泡排序中产生一个无向图。
这个算法不标准的伪代码如下:
void bubblesortgraph(n,a[])
//输入:点数n,1到n的全排列a
//输出:一个点数为n的无向图G
{ 创建一个有n个点,0条边的无向图G。
do{ swapped=false
for i 从1 到n-1
if(a[i]>a[i+1])
{ 在G中连接点a[i]和点a[i+1]
交换a[i]和a[i+1]
swapped =true
}
}while(swapped);
输出图G。
}
//结束。
那么我们要算出这个无向图G最大独立集的大小。但是事情不止于此。顺旺基同学有时 候心情会不爽,这个时候他就会要求你再回答多一个问题:最大独立集可能不是唯一的,但 有些点是一定要选的,问哪些点一定会在最大独立集里。今天恰好他不爽,被他问到的同学 就求助于你了。
首先可以发现一定是在当前序列中的最长上升子序列,但是怎么才能判断当前数字一定在所有的最长上升子序列中呢?可以判断(以当前为开始的向左边的最长下降子序列,以当前为开始的向右的最长上升子序列)的二元组是唯一的否则一定有另一个可以替换,弄两次最长上升子序列就行了,具体的优化方法自己百度吧
输入