ComfyUI 最强图像反推 JoyCaption2 安装步骤及问题解决

JoyCaption2(joy-caption-alpha-two)是当前ComfyUI生态中主流的图像反推工具之一,通过结合多模态模型和语言模型实现高精度图像描述生成,适用于AI绘画提示词生成、批量文件打标等场景。以下是其核心特性与技术要点:

一、功能特性

‌精细化图像反推‌
相比前代模型,反推结果包含更丰富的细节描述,支持对人物特征(如发色、服装)、场景元素(如光照、构图)、风格(如艺术流派)等17类细节的分类增强‌
‌多样化输出控制
支持9种提示词风格(如MidJourney风格、艺术评论模式)
可调节输出长度(从极简到超长描述)
支持NSFW/SFW内容识别与处理‌
‌高效批量处理‌
提供本地部署方案,支持低显存设备(最低10G显存)完成批量图像打标,兼容ComfyUI工作流节点化操作‌

二、技术架构

‌多模型协作‌
采用google/siglip-so400m-patch14-384提取图像特征,结合Llama-3.1-8B-Lexi语言模型生成文本,实现图文对齐优化‌35。
‌动态配置扩展‌
允许用户通过组合细节分类参数(如人物细节+构图风格+景深)定制反推结果,提升生成内容的灵活性与准确性‌。

三、应用场景

AI绘画工作流‌

与ComfyUI Flux插件结合,实现“图像→提示词→新图像”的闭环创作,支持Lora模型调用与多图融合‌13。

自动化数据标注‌

适用于训练集图像标签生成,支持CSV/TXT格式批量导出‌

以下是mac mini M4 下ComfyUI安装步骤及遇到问题解决

ComfyUI Manager 里直接搜索 ComfyUI_SLK_joy_caption_two 安装

四、模型下载

1.CLIP模型

模型地址:https://hf-mirror.com/google/siglip-so400m-patch14-384/tree/main
所有模型下载到

ComfyUI/models/models/clip/siglip-so400m-patch14-384/

2.LLM模型

unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
模型地址:https://hf-mirror.com/unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit/tree/main
所有模型下载到

ComfyUI/models/models/ComfyUI/models/LLM/Meta-Llama-3.1-8B-Instruct-bnb-4bit/

3. Joy-Caption-alpha-two 模型

模型地址: https://huggingface.co/spaces/fancyfeast/joy-caption-alpha-two/tree/main/cgrkzexw-599808
所有模型下载到

ComfyUI/models/models/ComfyUI/models/models/Joy_caption_two/

下载完成后重启ComfyUI

五、问题与处理

运行后遇到以下问题 猜测是transformers版本问题,
查询当前transformers 版本

pip show transformers
#显示当前版本号为 4.49.0
Name: transformers
Version: 4.49.0

推荐版本号 4.44.0
删了当前版本重新安装

 pip uninstall transformers
 
 pip install transformers==4.44.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

重新运行

Exception during processing !!! Failed to import transformers.models.timm_wrapper.configuration_timm_wrapper because of the following error (look up to see its traceback):
cannot import name 'ImageNetInfo' from 'timm.data' (/opt/miniconda3/lib/python3.12/site-packages/timm/data/__init__.py)
Traceback (most recent call last):
  File "/opt/miniconda3/lib/python3.12/site-packages/transformers/utils/import_utils.py", line 1863, in _get_module
    return importlib.import_module("." + module_name, self.__name__)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值