机器学习--聚类算法k-means25

聚类算法

一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。
在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果。
聚类算法与分类算法最大的区别 聚类算法是无监督的学习算法,而分类算法属于监督的学习算法。
在这里插入图片描述

k-means其实包含两层内容:

  • K : 初始中心点个数(计划聚类数)
  • means:求中心点到其他数据点距离的平均值
  • k-means聚类步骤
    1、随机设置K个特征空间内的点作为初始的聚类中心
    2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别
    3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)
    4、如果计算得出的新中心点与原中心点一样(质心不再移动),那么结束,否则重新进行第二步过程

sklearn中kmean算法

导入包

from sklearn.cluster import KMeans, 
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
载入数据
data = pd.read_csv("kmeans.txt", delimiter=" ",header=None)
data

0 1 2 3
0 1.658985 4.285136 NaN NaN
1 -3.453687 3.424321 NaN NaN
2 4.838138 -1.151539 NaN NaN
… … … … …
79 -4.905566 -2.911070 NaN NaN
80 rows × 4 columns
数据是txt形式,第三四列有nan值,因为是空格,所以做个转换把后两列删除

data = data.iloc[:,:2]
data
	0				1
0	1.658985	4.285136
1	-3.453687	3.424321
		..	...	...
79	-4.905566	-2.911070
80 rows × 2 columns
# 设置k值
k = 4  
estimator = KMeans(n_clusters=k) 
# estimator = MiniBatchKMeans(n_clusters=k)
estimator.fit(data)
centers = estimator.cluster_centers_
centers

array([[ 2.6265299 , 3.10868015],
[-3.38237045, -2.9473363 ],
[-2.46154315, 2.78737555],
[ 2.80293085, -2.7315146 ]])

4类每个类别的中心点

result = estimator.predict(data)
result

预测结果

array([0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2,
3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1,
0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2,
3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1])

estimator.labels_

array([0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2,
3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1,
0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2,
3, 1, 0, 2, 3, 1, 0, 2, 3, 1, 0, 2, 3, 1])

#画出各个数据点,用不同颜色表示分类
mark = ['or', 'ob', 'og', 'oy']
for i in range(len(data)):
    plt.plot(data.iloc[i,0],data.iloc[i,1], mark[result[i]])
    
# # 画出各个分类的中心点
mark = ['*r', '*b', '*g', '*y']
for i,center in enumerate(centers):
    plt.plot(center[0],center[1], mark[i], markersize=20)
plt.show()

在这里插入图片描述

# 获取数据值所在的范围
x_min, x_max = data.iloc[:, 0].min() - 1, data.iloc[:, 0].max() + 1
y_min, y_max = data.iloc[:, 1].min() - 1, data.iloc[:, 1].max() + 1

# 生成网格矩阵
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y_min, y_max, 0.02))

z = estimator.predict(np.c_[xx.ravel(), yy.ravel()])# ravel与flatten类似,多维数据转一维。flatten不会改变原始数据,ravel会改变原始数据
z = z.reshape(xx.shape)
# 等高线图
cs = plt.contourf(xx, yy, z)
# 显示结果
# 画出各个数据点,用不同颜色表示分类
mark = ['or', 'ob', 'og', 'oy']
for i in range(len(data)):
    plt.plot(data.iloc[i,0],data.iloc[i,1], mark[result[i]])

# 画出各个分类的中心点
mark = ['*r', '*b', '*g', '*y']
for i,center in enumerate(centers):
    plt.plot(center[0],center[1], mark[i], markersize=20)
    
plt.show()

在这里插入图片描述
当数据量特变大时我们可以用MiniBatchKMeans(n_clusters=k)算法。

Mini Batch K-Means算法是K-Means算法的变种,采用小批量的数据子集减小计算时间。这里所谓的小批量是指每次训练算法时所随机抽取的数据子集,采用这些随机产生的子集进行训练算法,大大减小了计算时间,结果一般只略差于标准算法。
该算法的迭代步骤有两步:
1:从数据集中随机抽取一些数据形成小批量,把他们分配给最近的质心
2:更新质心
与K均值算法相比,数据的更新是在每一个小的样本集上。
Mini Batch K-Means比K-Means有更快的 收敛速度,但同时
也降低了聚类的效果,但是在实际项目中却表现得不明显。

聚类算法总结

k-means算法比较简单,但也有几个比较大的缺点
(1)k值的选择是用户指定的,不同的k得到的结果会有挺大的不同,如下图所示,左边是k=3的结果,这个就太稀疏了,蓝色的那个簇其实是可以再划分成两个簇的。而右图是k=5的结果,可以看到红色菱形和蓝色菱形这两个簇应该是可以合并成一个簇的:
(2)对k个初始质心的选择比较敏感,容易陷入局部最小值。例如,我们上面的算法运行的时候,有可能会得到不同的结果,如下面这两种情况。K-means也是收敛了,只是收敛到了局部最小值:
(3)存在局限性,如下面这种非球状的数据分布就搞不定了:
(4)数据库比较大的时候,收敛会比较慢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值