【概率论】贝叶斯公式与试剂检测模型

贝叶斯公式

全概率公式

设{H_{1}, H_{2},..., H_{n}} 是样本空间 S 的一个划分,且P(H_{k}) > 0 (k = 1, 2, ..., n),则对于任意事件 A ,有

P(A) = \sum_{k = 1}^{n} P(H_{k})P(A|H_{k})

全概率公式我们经常使用,如同我们分析一些事件时,我们常常会分类讨论,然后将结果加和起来。这便是全概率公式的应用。

贝叶斯公式

设{H_{1}, H_{2},..., H_{n}} 是样本空间 S 的一个划分,且P(H_{k}) > 0 (k = 1, 2, ..., n),则对于任意事件 A(P(A) > 0),有

P(H_{k}|A) =\frac{P(A|H_k)P(H_{k})}{\sum_{k = 1}^{n}P(H_{k})P(A|H_{k})} (k = 1, 2, ..., n)

由乘法公式和全概率公式,可得

P(AH_{k}) = P(A|H_{k})P(H_{k})     

 P(A) = \sum_{k = 1}^{n} P(H_{k})P(A|H_{k})

 带入得

P(H_{k}|A) = \frac{P(A|H_{k})}{P(A)} = \frac{P(A|H_{k})P(H_{k})}{\sum_{k = 1}^{n}P(H_{k})P(A|H_{k})} (k = 1, 2, ..., n)

很容易发现,贝叶斯公式的分子是分母的其中一项。

实际生活中贝叶斯公式有较重大的应用,一般我们将事件A表示为某种实验的结果,而H_{1}, H_{2},..., H_{n}表示A事件产生的原因或某种假设。无条件概率P(H_{k})称作“假设”H_{k}验前概率,而在事件A出现的情况下,条件概率P(H_{k}|A)称作“假设”H_{k}验后概率。 


试剂检测模型

通过下面的模型,可以很好的解释贝叶斯公式的应用原理。

        某种疾病在人群中的发病率为0.002,现某公司研发了一种检测试剂,对于患病人群检测的阳性率为0.98,但对于健康人群也会有0.01的阳性率。若某人使用该检测试剂检测为阳性,求此人患该疾病的概率。

我们可以设事件C = {此人患该疾病},事件A = {检测出阳性};

由此,有

P(C) = 0.002P(\bar{C}) = 0.998

P(A|C) = 0.98P(\bar{A}|C) = 0.02

P(A|\bar{C}) = 0.01P(\bar{A}|\bar{C}) = 0.99

根据贝叶斯公式

P(C|A) = \frac{P(A|C)P(C)}{P(C)P(A|C)+P(\bar{C})P(A|\bar{C})}\approx 0.164

这是该试剂检测一次的结果,这样的概率明显不能说服我们,我们可以探究一下产生这种结果的原因(因为数学公式是不可能错的!):

P(C|A) = \frac{P(A|C)P(C)}{P(C)P(A|C)+P(\bar{C})P(A|\bar{C})} = \frac{0.98\times 0.002}{0.002\times 0.98 + 0.998\times 0.01}

从参与计算的数据可以看出:

P(\bar{C})P(A|\bar{C})项与P(C)P(A|C)项相比太大了!

具体到此次检测,在患病阳性率与不患病率相当的情况下,不患病的阳性率竟是患病率的5倍!由此我们可以理解为什么此次检测的准确率如此低下。

为了提高检测的准确性,我们可以增加检测的次数,接下来我们进行第二次检测:

由于有了第一次检测的结果,我们可以用计算出的发病率更新P(C)(即发病率)的值(注意,此次更新只对该受测者有效):

P(C) = 0.164P(\bar{C}) = 0.164

由于检测试剂的有效性不发生改变,其他数据我们沿用。

对于第二次检测,我们仍假设检测结果为阳性,由此来判别该试剂的有效性:

由贝叶斯公式

P(C|A) = \frac{P(A|C)P(C)}{P(C)P(A|C)+P(\bar{C})P(A|\bar{C})}\approx 0.951

我们会发现此时,患病的阳性率已经接近1了,尽管还有一些差距。但为此我们付出了两次检测的代价。

由此可知,除了患病阳性率,不患病阳性率也是判别检测试剂有效性的重要指标。而对于一些检测精度不高的试剂,我们可以增加检测次数来提高准确率。


在此次贝叶斯公式的应用中,我们通过不断地利用验后信息来修正对于原事件的概率估计,来达到一种较为理想的结果。

同时这也说明了,我们不必在事物发生之前去收集全部的信息,而可以在事物的发展过程中不断捕获新的信息来逐步修正对相关事件的概率估计,最终做出正确的决策。这是贝叶斯公式提供的一种重要的统计方法。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值