Pandas快速入门(二)—— 对缺失值的处理

本文介绍了如何使用Pandas库在Python中处理数据集中的缺失值,包括删除含有缺失值的行,使用fillna函数填充缺失值,以及通过isna()函数创建布尔掩码来识别哪些元素是缺失的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 缺失值

1.1 过滤含缺失值的行         

1.2 填充缺失值

1.3 提取nan的布尔掩码


1. 缺失值

        Pandas主要用np.nan表示缺失值。计算时,默认不包含空值。

1.1 过滤含缺失值的行         

        DataFrame.dropna(axis=0,how='any',thresh=None,subset=None,inplace=False)
        参数说明:

参数名 说明
axis 默认值为0 表示删除有缺省值的行;1 表示删除有缺省值的列
how 默认值为'any' 表示行/列中有一个值为缺省值就删除;'all' 表示行/列中的值全部为缺省值才删除
thresh 参数值为数值,表示行/列中的非缺省值小于/等于thresh的值,则删除
subset 用于指定要检索缺省值的列名或行索引
inplace 用于指定是否对原始数据进行原地处理,默认值为False,表示不对原始数据进行原地处理,而是返回一个新的dataframe对象
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值