第一:R方(R-squared)
定义:衡量模型拟合度的一个量,是一个比例形式,被解释方差/总方差。
公式:R-squared = SSR/TSS
=1 - RSS/TSS
其中:TSS是执行回归分析前,响应变量固有的方差。
RSS残差平方和就是,回归模型不能解释的方差。
SSR回归模型可以解释的方差。
综上,R-squared 比列值区间在【0,1】
第二:线性回归模型下,R方和相关系数
相关系数公式

我们知道,相关系数衡量两个变量【预测变量X,响应变量Y】之间的"距离"。
1、一元线性回归
R方在一元线性回归模型中,衡量【响应变量X和预测变量Y】的线性关系。
R方=cor(X,Y)^2
但是在多元线性回归模型中,因为涉及多个预测变量,所有R方就是衡量响应变量和多个预测变量之间的关系。
而相关系数,只是衡量一对变量之间的关系,所有就不能推广了。
2、多元线性回归模型
R平方=cov(y,yi)^2
其中相关系数的两个变量变成,响应值和线性回归的预测值了。当然一元线性也同样适用了。

本文深入探讨了线性回归中的R方(R-squared)和调整R方(Adjusted R-Square)。R方是衡量模型拟合度的比例,其值介于0和1之间。在一元线性回归中,R方等于相关系数的平方。而在多元线性回归中,R方反映了响应变量与所有预测变量的线性关系。调整R方则考虑了模型中变量的数量,避免因增加无关变量导致的拟合度虚假提升。
最低0.47元/天 解锁文章
1269





