Machine Learning A-Z学习笔记3
第三章多元线性回归
1.简单原理
多元线性回归(Multiple Linear Regression):拥有多个变量
有关线性回归的五大准则
以"公司营收"為例子,可以知道X1~X4分別代表研发成本,行政支出,市场营销,公司所在地
对于公司位置不是一个数值,所以需要OneHotEncoder将地点变为虚拟变量
虚拟变量的陷阱:一定要去除线性相关量
由于多元线性回归有多个变量,但并不是所有变量都有用,所以我们需要一系列操作来筛选合适的变量
all-in
除非你有相关的专业知识,或者你必须,或者是为了方向淘汰做准备
反向淘汰(用得最多)
- 假设一个阈值(假设为0.5)
- 将当前所有的变量丢进去训练
- 若模型的测试结果高于阈值,则进入步骤4,反之结束。
- 移除模型
- 删掉P值大于阈值的自变量然后重新进行训练,然后回到步骤3
顺向淘汰
- 假设一个阈值(假设为0.5)
- 设置有n个自变量,为每一个自变量建立一个模型,并挑选p值最小的那个保留
- 添加其他自变量
- 训练模型并且挑选p值最小的那个,如果仍小于阈值则回到步骤3,反之结束
信息量比较
穷举法
2.相关代码
# Multiple Linear Regression
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('50_Startups.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 4].values
#处理分类数据
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:, 3] = labelencoder_X.fit_transform(X[:, 3])
onehotencoder = OneHotEncoder(categorical_features = [3])
X = onehotencoder.fit_transform(X).toarray()
#虚拟变量陷阱,删除一列
X = X[:,1:]
# 训练集和测试集分类
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state = 0)
#导入线性回归标准库,创建回归器,回归器实现了特征缩放
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
#预测数据
y_pred = regressor.predict(X_test)
#自变量选择 反向淘汰法
#准备工作 因为这个函数不包常数项,总共40行,给加上一列全是1
import statsmodels.formula.api as sm
X_train = np.append(arr = np.ones((40,1)), values = X_train, axis = 1)
#反向淘汰
#1. 先定义一个阈值
#2. p-value 越高,统计显著性越低
#3. 每个变量的p-value,大于阈值,淘汰
X_opt = X_train[:,[0,1,2,3,4,5]] #
regressor_OLS = sm.OLS(endog = y_train, exog = X_opt).fit()
regressor_OLS.summary()
#移除最大的那个变量,x2 对应的是否在newyork
X_opt = X_train[:,[0,1,3,4,5]] #
regressor_OLS = sm.OLS(endog = y_train, exog = X_opt).fit()
regressor_OLS.summary()
#移除最大的那个x1
X_opt = X_train[:,[0,3,4,5]] #
regressor_OLS = sm.OLS(endog = y_train, exog = X_opt).fit()
regressor_OLS.summary()
#可以发现x2又是最大的
X_opt = X_train[:,[0,3,5]]
regressor_OLS = sm.OLS(endog = y_train, exog = X_opt).fit()
regressor_OLS.summary()
X_opt = X_train[:,[0,3]] #
regressor_OLS = sm.OLS(endog = y_train, exog = X_opt).fit()
regressor_OLS.summary()