文章目录
- Ch3.微分中值定理与导数应用
- (一) 微分中值定理
- 1.微分中值定理
- 0.费马引理
- 1.罗尔定理
- 2.拉格朗日中值定理
- 3.柯西中值定理
- 4.泰勒中值定理 (泰勒公式拉格朗日余项)
- 5.总结
- 6.微分中值定理的证明题
- (0)常用导数恒等式
- (1)单中值:证明存在一个点ξ∈(a,b),使 g [ ξ , f ( ξ ) , f ′ ( ξ ) ] = 0 g[ξ,f(ξ),f'(ξ)]=0 g[ξ,f(ξ),f′(ξ)]=0
- (2)双中值:证明存在两个中值点 ξ,η∈(a,b),使 g [ ξ , η , f ( ξ ) , f ( η ) , f ′ ( ξ ) , f ′ ( η ) ] = 0 g[ξ,η,f(ξ),f(η),f'(ξ),f'(η)]=0 g[ξ,η,f(ξ),f(η),f′(ξ),f′(η)]=0
- (3)高阶导数:证明存在一个中值点 ξ∈(a,b),使 g [ ξ , f ( n ) ( ξ ) ] ≥ 0 ( n ≥ 2 ) g[ξ,f^{(n)}(ξ)]≥0 \ (n≥2) g[ξ,f(n)(ξ)]≥0 (n≥2)
- 2.泰勒公式
- 3.洛必达法则
- 4.方程的根的存在性及个数
- 5.函数不等式的证明
- (二) 导数应用
Ch3.微分中值定理与导数应用
一、考试内容概要:
(一) 微分中值定理
(二) 导数的应用
二、常考题型与典型例题
题型一:求极限、函数的单调性、求函数的极值和最值 【基础】
题型二:确定曲线的凹向与拐点、求曲线的渐近线、曲率 【基础】
题型三:方程的根的存在性及个数 【中等】
题型四:不等式的证明:证明函数不等式、证明常数不等式(转换为函数不等式) 【中等】
题型五:微分中值定理的证明题 【有难度】
(一) 微分中值定理
1.微分中值定理
0.费马引理
1.罗尔定理
罗尔定理:如果函数f(x)满足:
(1)在闭区间
[
a
,
b
]
[a,b]
[a,b] 上连续
(2)在开区间
(
a
,
b
)
(a,b)
(a,b) 内可导
(3)在区间端点处的函数值相等,即
f
(
a
)
=
f
(
b
)
f(a)=f(b)
f(a)=f(b)
那么在开区间
(
a
,
b
)
(a,b)
(a,b) 内至少有一点
ξ
(
a
<
ξ
<
b
)
ξ (a<ξ<b)
ξ(a<ξ<b),使得
f
′
(
ξ
)
=
0
f'(ξ)=0
f′(ξ)=0 :
∃
ξ
∈
(
a
,
b
)
,使
f
′
(
ξ
)
=
0
\existξ∈(a,b),使 f'(ξ)=0
∃ξ∈(a,b),使f′(ξ)=0
例题1:
例题2:一点处导数:邻域内增减性
2.拉格朗日中值定理
若函数f(x)满足:
(1)在闭区间
[
a
,
b
]
[a,b]
[a,b] 上连续
(2)在开区间
(
a
,
b
)
(a,b)
(a,b) 内可导
那么在开区间
(
a
,
b
)
(a,b)
(a,b) 内至少有一点ξ (a<ξ<b),使如下等式成立:ョξ∈(a,b),使得
f
(
b
)
−
f
(
a
)
=
f
′
(
ξ
)
(
b
−
a
)
(
a
<
ξ
<
b
)
或
f
′
(
ξ
)
=
f
(
b
)
−
f
(
a
)
b
−
a
(
a
<
ξ
<
b
)
f(b)-f(a)=f'(ξ)(b-a)\qquad (a<ξ<b)\\[5mm] 或 \qquad f'(ξ)=\dfrac{f(b)-f(a)}{b-a}\qquad (a<ξ<b)
f(b)−f(a)=f′(ξ)(b−a)(a<ξ<b)或f′(ξ)=b−af(b)−f(a)(a<ξ<b)
1.罗尔定理与拉格朗日中值定理的关系:
①罗尔定理是拉格朗日中值定理的特例:f(a)=f(b),则f’(ξ)=0
②拉格朗日中值定理是罗尔定理的推广
2.拉朗转化功能
①
f
(
b
)
−
f
(
a
)
b
−
a
\dfrac{f(b)-f(a)}{b-a}
b−af(b)−f(a)不会操作,转化为
f
′
(
ξ
)
f'(ξ)
f′(ξ)
②
f
(
b
)
−
f
(
a
)
f(b)-f(a)
f(b)−f(a)不好操作,转化为
(
b
−
a
)
f
′
(
ξ
)
(b-a)f'(ξ)
(b−a)f′(ξ)
③
f
′
(
b
)
−
f
′
(
a
)
f'(b)-f'(a)
f′(b)−f′(a)不好操作,转化为
(
b
−
a
)
f
′
′
(
ξ
)
(b-a)f''(ξ)
(b−a)f′′(ξ)
3.证明拉格朗日中值定理:构造辅助函数F(x)=f(x)-g(x),用罗尔定理F(a)=F(b)=0
【其中f(x)为原曲线,g(x)为弦AB,以点A求AB的直线方程】
3.柯西中值定理
证明:①是传统的辅助函数,但难于验证F(a)=F(b) ②是更好的辅助函数,更易得F(a)=F(b)
4.泰勒中值定理 (泰勒公式拉格朗日余项)
佩阿诺余项:局部性态,研究极限
拉格朗日余弦:整体性态,研究中值定理
5.总结
1.四大中值定理的本质
①罗尔、拉朗、柯西 三者建立了函数值与一阶导数的联系
f
(
x
)
⇦⇨
f
′
(
x
)
f(x)⇦⇨f'(x)
f(x)⇦⇨f′(x)。给函数,证导数 / 给导数,证函数。
②泰勒中值定理:函数值
f
(
x
)
f(x)
f(x)与高阶导数
f
(
n
)
(
x
)
f^{(n)}(x)
f(n)(x)
2.四者的关系:
罗尔定理
⇌
推广
特例
拉格朗日中值定理
⇌
推广
特例
柯西中值定理
罗尔定理 \underset{特例}{\xrightleftharpoons{推广}} 拉格朗日中值定理\underset{特例}{\xrightleftharpoons{推广}}柯西中值定理
罗尔定理特例推广
拉格朗日中值定理特例推广
柯西中值定理
但是,拉朗和柯西都是通过 罗尔定理+构造辅助函数 证明出来的
6.微分中值定理的证明题
(0)常用导数恒等式
(1) [ x f ( x ) ] ′ = f ( x ) + x f ′ ( x ) [xf(x)]'=f(x)+xf'(x) [xf(x)]′=f(x)+xf′(x)
(2) [ x n f ( x ) ] ′ = n x n − 1 f ( x ) + x n f ′ ( x ) = x n − 1 [ n f ( x ) + x f ′ ( x ) ] [x^nf(x)]'=nx^{n-1}f(x)+x^nf'(x)=x^{n-1}[nf(x)+xf'(x)] [xnf(x)]′=nxn−1f(x)+xnf′(x)=xn−1[nf(x)+xf′(x)]
(3) [ f ( x ) x ] ′ = x f ′ ( x ) − f ( x ) x 2 [\dfrac{f(x)}{x}]'=\dfrac{xf'(x)-f(x)}{x^2} [xf(x)]′=x2xf′(x)−f(x)
(4) [ f ( x ) x n ] ′ = x n f ′ ( x ) − n x n − 1 f ( x ) x 2 n = x f ′ ( x ) − n f ( x ) x n + 1 [\dfrac{f(x)}{x^n}]'=\dfrac{x^nf'(x)-nx^{n-1}f(x)}{x^{2n}}=\dfrac{xf'(x)-nf(x)}{x^{n+1}} [xnf(x)]′=x2nxnf′(x)−nxn−1f(x)=xn+1xf′(x)−nf(x)
(5) [ e λ x f ( x ) ] ′ = λ e λ x f ( x ) + e λ x f ′ ( x ) = e λ x [ f ′ ( x ) + λ f ( x ) ] [e^{λx}f(x)]'=λe^{λx}f(x)+e^{λx}f'(x)=e^{λx}[f'(x)+λf(x)] [eλxf(x)]′=λeλxf(x)+eλxf′(x)=eλx[f′(x)+λf(x)]
(6) [ e − λ x f ( x ) ] ′ = − λ e λ x f ( x ) + e − λ x f ′ ( x ) = e − λ x [ f ′ ( x ) − λ f ( x ) ] [e^{-λx}f(x)]'=-λe^{λx}f(x)+e^{-λx}f'(x)=e^{-λx}[f'(x)-λf(x)] [e−λxf(x)]′=−λeλxf(x)+e−λxf′(x)=e−λx[f′(x)−λf(x)]
(7) [ f ( x ) f ′ ( x ) ] ′ = [ f ′ ( x ) ] 2 + f ( x ) f ′ ′ ( x ) [f(x)f'(x)]'=[f'(x)]^2+f(x)f''(x) [f(x)f′(x)]′=[f′(x)]2+f(x)f′′(x)
(1)单中值:证明存在一个点ξ∈(a,b),使 g [ ξ , f ( ξ ) , f ′ ( ξ ) ] = 0 g[ξ,f(ξ),f'(ξ)]=0 g[ξ,f(ξ),f′(ξ)]=0
方法:构造辅助函数,用罗尔定理:
构造辅助函数的三种方法:
1.分析法(还原法)
观察分析,确定辅助函数F(x),使得
F
′
(
x
)
=
g
[
ξ
,
f
(
ξ
)
,
f
′
(
ξ
)
]
F'(x)=g[ξ,f(ξ),f'(ξ)]
F′(x)=g[ξ,f(ξ),f′(ξ)]。且F(x)有两个端点函数值相等,用罗尔定理可得
F
′
(
x
)
=
g
[
ξ
,
f
(
ξ
)
,
f
′
(
ξ
)
]
=
0
F'(x)=g[ξ,f(ξ),f'(ξ)]=0
F′(x)=g[ξ,f(ξ),f′(ξ)]=0。
2.微分方程法
①求微分方程
g
[
x
,
y
,
y
′
]
=
0
g[x,y,y']=0
g[x,y,y′]=0的通解
H
(
x
,
y
)
=
C
H(x,y)=C
H(x,y)=C
②设辅助函数:
F
(
x
)
=
H
(
x
,
f
(
x
)
)
F(x)=H(x,f(x))
F(x)=H(x,f(x))
3.常用辅助函数:【辅导讲义P79】
①
ξ
f
′
(
ξ
)
+
n
f
(
ξ
)
=
0
ξf'(ξ)+nf(ξ)=0
ξf′(ξ)+nf(ξ)=0,令
F
(
x
)
=
x
n
f
(
x
)
F(x)=x^nf(x)
F(x)=xnf(x)
② ξ f ′ ( ξ ) − n f ( ξ ) = 0 ξf'(ξ)-nf(ξ)=0 ξf′(ξ)−nf(ξ)=0,令 F ( x ) = f ( x ) x n F(x)=\dfrac{f(x)}{x^n} F(x)=xnf(x)
③ f ′ ( ξ ) + λ f ( ξ ) = 0 f'(ξ)+λf(ξ)=0 f′(ξ)+λf(ξ)=0,令 F ( x ) = e λ x f ( x ) F(x)=e^{λx}f(x) F(x)=eλxf(x)
④ f ′ ( ξ ) + g ( ξ ) f ( ξ ) = 0 f'(ξ)+g(ξ)f(ξ)=0 f′(ξ)+g(ξ)f(ξ)=0,令 F ( x ) = e ∫ g ( x ) d x f ( x ) F(x)=e^{\int g(x)dx}f(x) F(x)=e∫g(x)dxf(x)
(2)双中值:证明存在两个中值点 ξ,η∈(a,b),使 g [ ξ , η , f ( ξ ) , f ( η ) , f ′ ( ξ ) , f ′ ( η ) ] = 0 g[ξ,η,f(ξ),f(η),f'(ξ),f'(η)]=0 g[ξ,η,f(ξ),f(η),f′(ξ),f′(η)]=0
1.方法:
(1)不要求
ξ
≠
η
ξ≠η
ξ=η
在同一区间[a,b]上用两次中值定理(拉格朗日、柯西中值定理)
(2)要求
ξ
≠
η
ξ≠η
ξ=η
将区间[a,b]分为两个子区间,在两个子区间上分别用拉格朗日中值定理
难点和关键点:两个子区间上分界点的选取:
①用第一问的结论
②逆推法:先假设一个分界点c,(a,c)和(c,b)上各用一次拉格朗日中值定理,代入要证明的条件,观察
f
(
c
)
f(c)
f(c)的选取。【辅导讲义P83例5】
(3)高阶导数:证明存在一个中值点 ξ∈(a,b),使 g [ ξ , f ( n ) ( ξ ) ] ≥ 0 ( n ≥ 2 ) g[ξ,f^{(n)}(ξ)]≥0 \ (n≥2) g[ξ,f(n)(ξ)]≥0 (n≥2)
方法:用带拉格朗日余项的泰勒公式,展开点 x 0 x_0 x0选提供函数值和导数值信息多的点。(当提供函数值、提供导数值信息一样多,如都各自提供一个,此时选提供导数值的点展开,然后分别令x=提供函数值的点,代入泰勒公式 【辅导讲义P85例题2】)
例题1:13年18. 中值定理:有两问的问题,考虑把第一问的结论用到第二问上
分析:
(Ⅰ)拉朗 或 构造辅助函数+罗尔
(Ⅱ)构造函数函数 + 罗尔:
设
g
′
(
x
)
=
f
′
′
(
x
)
+
f
′
(
x
)
−
1
g'(x)=f''(x)+f'(x)-1
g′(x)=f′′(x)+f′(x)−1,∴
g
(
x
)
=
f
′
(
x
)
+
f
(
x
)
−
x
g(x)=f'(x)+f(x)-x
g(x)=f′(x)+f(x)−x
根据f’(x)是偶函数,找到g(1)=g(-1),用罗尔 g’(ξ)=0,得证

例题2:16年19. 拉朗转化功能:有两问的问题,考虑把第一问的结果用到第二问上
答案:
例题3:880第二章基础大题21 :拉朗转化功能
答案:
例题4:2023大题:三次放缩
例题5:
2.泰勒公式
泰勒公式的伟大意义:
①建立了函数值与高阶导数之间的联系:
f
(
x
)
⇦⇨
f
(
n
)
(
x
)
f(x)⇦⇨f^{(n)}(x)
f(x)⇦⇨f(n)(x) 【题目出现了n阶导数,应该要想到泰勒公式】
②用多项式逼近。多项式求极限、求导数、求积分都比较简单。
(1)泰勒中值定理1:佩亚诺余项,局部泰勒公式,用于极限的计算
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + f ′ ′ ′ ( x 0 ) 3 ! ( x − x 0 ) 3 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + o ( ( x − x 0 ) n ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+\dfrac{f'''(x_0)}{3!}(x-x_0)^3+...+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n) f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+3!f′′′(x0)(x−x0)3+...+n!f(n)(x0)(x−x0)n+o((x−x0)n)
佩亚诺余项(用于计算极限): R n ( x ) = o ( ( x − x 0 ) n ) R_n(x)=o((x-x_0)^n) Rn(x)=o((x−x0)n)
(2)泰勒中值定理2:拉格朗日余项,整体泰勒公式,用于证明
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + f ′ ′ ′ ( x 0 ) 3 ! ( x − x 0 ) 3 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+\dfrac{f'''(x_0)}{3!}(x-x_0)^3+...+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x) f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+3!f′′′(x0)(x−x0)3+...+n!f(n)(x0)(x−x0)n+Rn(x)
拉格朗日余项(用于证明): R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 ( x 0 < ξ < x ) R_n(x)=\dfrac{f^{(n+1)}(ξ)}{(n+1)!}(x-x_0)^{n+1} (x_0<ξ<x) Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1(x0<ξ<x)
(3)麦克劳林公式
令 x 0 = 0 x_0=0 x0=0, f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + f ′ ′ ′ ( 0 ) 3 ! x 3 + . . . + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x)=f(0)+f'(0)x+\dfrac{f''(0)}{2!}x^2+\dfrac{f'''(0)}{3!}x^3+...+\dfrac{f^{(n)}(0)}{n!}x^n+o(x^n) f(x)=f(0)+f′(0)x+2!f′′(0)x2+3!f′′′(0)x3+...+n!f(n)(0)xn+o(xn)
原式 | 泰勒展开 (写到3阶) |
---|---|
e x e^x ex | 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) 1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+o(x^3) 1+x+2!x2+3!x3+o(x3) |
sin x \sin x sinx | x − x 3 3 ! + x 5 5 ! + o ( x 5 ) x-\dfrac{x³}{3!}+\dfrac{x^5}{5!}+o(x^5) x−3!x3+5!x5+o(x5) |
cos x \cos x cosx | 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) 1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}+o(x^4) 1−2!x2+4!x4+o(x4) |
a r c s i n x \rm arcsinx arcsinx | x + x 3 3 ! + o ( x 3 ) x+\dfrac{x^3}{3!}+o(x^3) x+3!x3+o(x3) |
1 1 − x \dfrac{1}{1-x} 1−x1 | 1 + x + x 2 + x 3 + o ( x 3 ) 1+x+x^2+x^3+o(x^3) 1+x+x2+x3+o(x3) |
1 1 + x \dfrac{1}{1+x} 1+x1 | 1 − x + x 2 − x 3 + o ( x 3 ) 1-x+x^2-x^3+o(x^3) 1−x+x2−x3+o(x3) |
ln ( 1 + x ) \ln(1+x) ln(1+x) | x − x 2 2 + x 3 3 x-\dfrac{x^2}{2}+\dfrac{x^3}{3} x−2x2+3x3 − x 4 4 + . . . + ( − 1 ) n + 1 x n n + o ( x n ) -\dfrac{x^4}{4}+...+(-1)^{n+1}\dfrac{x^n}{n}+o(x^n) −4x4+...+(−1)n+1nxn+o(xn) |
− ln ( 1 − x ) -\ln(1-x) −ln(1−x) | x + x 2 2 + x 3 3 + . . . x+\dfrac{x^2}{2}+\dfrac{x^3}{3}+... x+2x2+3x3+... |
1 1 + x 2 \dfrac{1}{1+x^2} 1+x21 | 1 − x 2 + x 4 − x 6 + . . . 1-x^2+x^4-x^6+... 1−x2+x4−x6+... |
a r c t a n x {\rm arctan}x arctanx | x − x 3 3 + x 5 5 + . . . x-\dfrac{x^3}{3}+\dfrac{x^5}{5}+... x−3x3+5x5+... |
t a n x {\rm tan}x tanx | x + x 3 3 + o ( x 3 ) x+\dfrac{x³}{3}+o(x³) x+3x3+o(x3) |
( 1 + x ) α (1+x)^α (1+x)α | 1 + α x + α ( α − 1 ) 2 ! x 2 + . . . + α ( α − 1 ) . . . ( α − n + 1 ) n ! x n + o ( x n ) 1+αx+\dfrac{α(α-1)}{2!}x^2+...+\dfrac{α(α-1)...(α-n+1)}{n!}x^n+o(x^n) 1+αx+2!α(α−1)x2+...+n!α(α−1)...(α−n+1)xn+o(xn) |
例题1:13年1.
分析:
arctan
x
=
x
−
x
3
3
+
o
(
x
3
)
\arctan x=x-\dfrac{x^3}{3}+o(x^3)
arctanx=x−3x3+o(x3)
答案:D
例题2:16年12. 用泰勒公式求高阶导数
f
′
′
′
(
0
)
f'''(0)
f′′′(0)
分析:由麦克劳林公式:
f
′
′
′
(
0
)
3
!
=
a
3
\dfrac{f'''(0)}{3!}=a_3
3!f′′′(0)=a3
现考虑将
f
(
x
)
f(x)
f(x)泰勒展开求得
a
3
a_3
a3

答案: 1 2 \dfrac{1}{2} 21
例题3:20年9.
3.洛必达法则
(1)洛必达使用的三条件
(1)比值极限为 0 0 \dfrac{0}{0} 00或 ∞ ∞ \dfrac{∞}{∞} ∞∞
(2)分子分母都在 x 0 x_0 x0去心邻域内可导,且分母导数不为0
(3)求导后比值的极限存在 或 为∞
4.方程的根的存在性及个数
1.根的存在性
①方法一:零点定理
②方法二:罗尔定理
2.根的个数
①方法一:单调性
②方法二:罗尔定理推论
罗尔定理推论:若在区间 I \rm I I 上 f ( n ) ( x ) ≠ 0 f^{(n)}(x)≠0 f(n)(x)=0,则方程 f ( x ) = 0 f(x)=0 f(x)=0 在区间 I \rm I I 上最多有 n n n 个实根
3.做题步骤:
(1)构造函数,令
f
(
x
)
=
.
.
.
f(x)=...
f(x)=... 【则 原方程有根
⇔
\Leftrightarrow
⇔
f
(
x
)
=
0
f(x)=0
f(x)=0】
(2)求
f
′
(
x
)
f'(x)
f′(x),令
f
′
(
x
)
=
0
f'(x)=0
f′(x)=0,得驻点
(3)根据驻点分区间讨论单调性
例题1:17年18. 方程的根的存在性
分析:
(Ⅰ)至少存在一个实根:零点定理 【先 函数极限的局部保号性】
(Ⅱ)至少存在两个不同实根:找3个相等的点,两次罗尔定理 【先 构造辅助函数】
例题2:2011年17. 方程的根的个数
答案:
例题3:1996年1,2
答案:
例题4:
例题5:零点定理+单调性
例题6:罗尔定理证明根的存在性
例题7:
5.函数不等式的证明
(1)证明不等式的5种常用方法
①单调性
②最大最小值
③拉格朗日中值定理
④泰勒公式
⑤凹凸性
(2)基本不等式
① 2 π x < \dfrac{2}{π}x< π2x< sin x < x < tan x , x ∈ ( 0 , π 2 ) \sin x<x<\tan x,x∈(0,\dfrac{π}{2}) sinx<x<tanx,x∈(0,2π)
② x 1 + x < ln ( 1 + x ) < x \dfrac{x}{1+x}<\ln(1+x)<x 1+xx<ln(1+x)<x, x ∈ ( 0 , + ∞ ) x∈(0,+∞) x∈(0,+∞) ⇨ 1 n + 1 < ln ( 1 + 1 n ) < 1 n \dfrac{1}{n+1}<\ln(1+\dfrac{1}{n})<\dfrac{1}{n} n+11<ln(1+n1)<n1
③ 1 + x ≤ e x 1+x≤e^x 1+x≤ex
④放缩常用不等式:
∣
a
±
b
∣
≤
∣
a
∣
+
∣
b
∣
≤
2
max
{
∣
a
∣
,
∣
b
∣
}
|a±b|≤|a|+|b|≤2\max\{|a|,|b|\}
∣a±b∣≤∣a∣+∣b∣≤2max{∣a∣,∣b∣}
⑤ 2 a b ≤ a 2 + b 2 2ab≤a^2+b^2 2ab≤a2+b2
例题1:12年15. 证明函数不等式:构造辅助函数 + 单调性
分析:f’‘(x)>0 ∴f’(x)单增 ∴f’(x)>f’(0)=0 ∴f(x)单增 ∴f(x)>f(0)=0
答案:略
例题2:武忠祥老师每日一题Day79 证明函数不等式:最大最小值
答案:构造函数、求导、单调区间、极值最值
例题3:拉格朗日中值定理 证明不等式
例题4:单调性 证明不等式
例题5:
(二) 导数应用
1.函数的单调性与极值、最值
(1)函数的极值
1.极值的定义
设函数f(x)在点
x
0
x_0
x0的某邻域
U
(
x
0
)
U(x_0)
U(x0)内有定义,如果对于去心邻域
U
˚
(
x
0
)
Ů(x_0)
U˚(x0)内的任一x,【极值是局部形态】
恒有
f
(
x
)
<
f
(
x
0
)
f(x)<f(x_0)
f(x)<f(x0),则称
x
0
x_0
x0为
f
(
x
)
f(x)
f(x)的一个极大值点,称
f
(
x
0
)
f(x_0)
f(x0)是函数
f
(
x
)
f(x)
f(x)的一个极大值。
恒有
f
(
x
)
>
f
(
x
0
)
f(x)>f(x_0)
f(x)>f(x0),则称
x
0
x_0
x0为
f
(
x
)
f(x)
f(x)的一个极小值点,称
f
(
x
0
)
f(x_0)
f(x0)是函数
f
(
x
)
f(x)
f(x)的一个极小值。
函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点。
极大值可能小于极小值,没有大小关系
2.极值的判定
(1)极值的必要条件:
y
=
f
(
x
)
y=f(x)
y=f(x),①
x
0
x_0
x0是极值点 + ②
f
(
x
)
f(x)
f(x)在点
x
0
x_0
x0处可导 ⇨
x
0
x_0
x0是驻点,即
f
′
(
x
0
)
=
0
f'(x_0)=0
f′(x0)=0
【意思是:①可导函数f(x)的极值点,一定是它的驻点。②驻点不一定是极值点,如f(x)=x³ ③函数f(x)的极值点,不一定是它的驻点,因为极值点处可能不可导。如f(x)=|x|】
(1)可能的极值点:
①驻点,即 f ′ ( x 0 ) = 0 f'(x_0)=0 f′(x0)=0
②不可导点,即 f ′ ( x 0 ) f'(x_0) f′(x0)不存在
(2)普通函数f(x)的极值点与驻点没有关系
(2)极值的充分条件:
①极值第一充分条件:
x
0
x_0
x0两侧:①
f
′
(
x
)
f'(x)
f′(x)变号 或
f
(
x
)
f(x)
f(x)单调性相反
Ⅰ.极大值:
f
′
(
x
)
f'(x)
f′(x)由正变负 或
f
(
x
)
f(x)
f(x)由单增变单减
Ⅱ.极小值:
f
′
(
x
)
f'(x)
f′(x)由负变正 或
f
(
x
)
f(x)
f(x)由单减变单增
Ⅲ.没有极值:
f
′
(
x
)
f'(x)
f′(x)不变号 或
f
(
x
)
f(x)
f(x)单调性不变
②极值第二充分条件
设函数f(x)在
x
0
x_0
x0处具有二阶导数且
f
′
(
x
0
)
=
0
,
f
′
′
(
x
0
)
≠
0
f'(x_0)=0,f''(x_0)≠0
f′(x0)=0,f′′(x0)=0,则
Ⅰ.当
f
′
(
x
0
)
=
0
,
f
′
′
(
x
0
)
<
0
f'(x_0)=0,f''(x_0)<0
f′(x0)=0,f′′(x0)<0时,函数f(x)在
x
0
x_0
x0处取得极大值
Ⅱ.当
f
′
(
x
0
)
=
0
,
f
′
′
(
x
0
)
>
0
f'(x_0)=0,f''(x_0)>0
f′(x0)=0,f′′(x0)>0时,函数f(x)在
x
0
x_0
x0处取得极小值
③极值第三充分条件
若
y
=
f
(
x
)
y=f(x)
y=f(x)在
x
0
x_0
x0的某邻域内有n阶导数,且
f
′
(
x
0
)
=
f
′
′
(
x
0
)
=
.
.
.
=
f
(
n
−
1
)
(
x
0
)
=
0
f'(x_0)=f''(x_0)=...=f^{(n-1)}(x_0)=0
f′(x0)=f′′(x0)=...=f(n−1)(x0)=0,但
f
(
n
)
(
x
0
)
≠
0
f^{(n)}(x_0)≠0
f(n)(x0)=0,则
(1)n为偶数,则
x
0
x_0
x0为
f
(
x
)
f(x)
f(x)的极值点。且
f
(
n
)
(
x
0
)
>
0
f^{(n)}(x_0)>0
f(n)(x0)>0为极小值,
f
(
n
)
(
x
0
)
<
0
f^{(n)}(x_0)<0
f(n)(x0)<0为极大值
(2)n为奇数,f(x)在
x
0
x_0
x0处无极值,但
(
x
0
,
f
(
x
0
)
)
(x_0,f(x_0))
(x0,f(x0))为曲线y=f(x)的拐点
例题1:03年7.
分析:极值点是驻点 ( f ′ ( x 0 ) = 0 ) (f'(x₀)=0) (f′(x0)=0)或者不可导点 ( f ′ ( x 0 ) 不存在 ) (f'(x₀)不存在) (f′(x0)不存在)
从左到右依次为:驻点a,驻点b,不可导点0,驻点c
显然:
①驻点a为极大值点
②驻点b为极小值点
③不可导点0,由极值的第一充分条件,得x=0为极大值点
④驻点c为极小值点
答案:C
例题2:武24 D67 极值第二充分条件:
f
′
′
(
x
)
>
0
,极小值
f''(x)>0,极小值
f′′(x)>0,极小值
分析:
答案:B
(2)函数的最大值、最小值
1.求连续函数f(x)在闭区间[a,b]上的最值:
①求出(a,b)内所有驻点和不可导点
②求出驻点函数值、不可导点函数值、端点函数值。
③比较大小,最大的为最大值,最小的最小值
注:若函数f(x)在(a,b)内仅有唯一极值点,则唯一极值点处就取得最值
2.最大最小值应用题:
①建立目标函数
②求最大值最小值
例题1:转换目标函数
2.曲线的凹凸性与拐点
(1)凹凸性
(1)凹:判定方法:
①定义:
f
(
x
1
+
x
2
2
)
<
f
(
x
1
)
+
f
(
x
2
)
2
f(\dfrac{x_1+x_2}{2})<\dfrac{f(x_1)+f(x_2)}{2}
f(2x1+x2)<2f(x1)+f(x2)
②二阶导:
f
′
′
(
x
)
>
0
f''(x)>0
f′′(x)>0
③曲线形状: 曲线是凹的
(2)凸:判定方法:
①定义:
f
(
x
1
+
x
2
2
)
>
f
(
x
1
)
+
f
(
x
2
)
2
f(\dfrac{x_1+x_2}{2})>\dfrac{f(x_1)+f(x_2)}{2}
f(2x1+x2)>2f(x1)+f(x2)
②二阶导:
f
′
′
(
x
)
<
0
f''(x)<0
f′′(x)<0
③曲线形状: 曲线是凸的
(2)拐点
1.拐点的定义:
(
x
0
,
f
(
x
0
)
)
(x_0,f(x_0))
(x0,f(x0))是曲线上的点,一对坐标。
拐点
x
0
x_0
x0两侧凹凸性改变:凹→凸、凸→凹
2.拐点的判定:(一个必要,三个充分)
(1)拐点的必要条件:
f
′
′
(
x
0
)
=
0
f''(x_0)=0
f′′(x0)=0 或
f
′
′
(
x
0
)
f''(x_0)
f′′(x0)不存在
(2)拐点的充分条件:
①拐点的第一充分条件:
x
0
x_0
x0左右两侧
f
′
′
(
x
)
f''(x)
f′′(x) 异号 或
f
′
(
x
)
f'(x)
f′(x) 在
x
0
x_0
x0两侧单调性相反
②拐点的第二充分条件:
f
′
′
(
x
0
)
=
0
,
f
′
′
′
(
x
0
)
≠
0
f''(x_0)=0,f'''(x_0)≠0
f′′(x0)=0,f′′′(x0)=0
③拐点的第三充分条件:若
f
′
′
(
x
0
)
=
f
′
′
′
(
x
0
)
=
.
.
.
=
f
(
n
−
1
)
(
x
0
)
=
0
f''(x_0)=f'''(x_0)=...=f^{(n-1)}(x_0)=0
f′′(x0)=f′′′(x0)=...=f(n−1)(x0)=0,但
f
(
n
)
(
x
0
)
≠
0
f^{(n)}(x_0)≠0
f(n)(x0)=0,n为奇数【最高次导数为奇数阶导数不为0,为拐点】【2到n-1阶导为0,不要求1阶导为0】
奇数阶导数不为0:拐点 ;举例: f ′ ( x 0 ) = f ′ ′ ( x 0 ) = f ′ ′ ′ ( x 0 ) = f ( 4 ) ( x 0 ) = 0 , f ( 5 ) ( x 0 ) ≠ 0 f'(x_0)=f''(x_0)=f'''(x_0)=f^{(4)}(x_0)=0,f^{(5)}(x_0)≠0 f′(x0)=f′′(x0)=f′′′(x0)=f(4)(x0)=0,f(5)(x0)=0,则 x 0 x_0 x0为拐点
偶数阶导数不为0:极值点 ;举例: f ′ ( x 0 ) = f ′ ′ ( x 0 ) = f ′ ′ ′ ( x 0 ) = 0 , f ( 4 ) ( x 0 ) ≠ 0 f'(x_0)=f''(x_0)=f'''(x_0)=0,f^{(4)}(x_0)≠0 f′(x0)=f′′(x0)=f′′′(x0)=0,f(4)(x0)=0,则 x 0 x_0 x0为极值点
3.极值点 vs 拐点:
(1)极值点是x轴上的点
x
=
x
0
x=x_0
x=x0,拐点是曲线上的点
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)
(2)点的必要条件、第一第二充分条件,就是极值的必要条件、第一第二充分条件抬高一阶
(3)①可导函数的可导的点,不能同时出现极值点和拐点:
x
0
x_0
x0若为极值点,则
(
x
0
,
f
(
x
0
)
)
(x_0,f(x_0))
(x0,f(x0))不会是拐点。若
(
x
0
,
f
(
x
0
)
)
(x_0,f(x_0))
(x0,f(x0))为拐点,则
x
0
x_0
x0不会是极值点。
②不可导的点(如分段函数分界点),可以同时出现极值点和拐点
即,
f
(
x
)
f(x)
f(x)在
x
=
x
0
x=x_0
x=x0不可导,
x
=
x
0
x=x_0
x=x0与
(
x
0
,
f
(
x
0
)
)
(x_0,f(x_0))
(x0,f(x0))可以同时是
y
=
f
(
x
)
y=f(x)
y=f(x)的极值点与拐点。 【660 T161】
例题1:11年1. 拐点:曲线的凹凸性改变,且不是极值点
分析:① 穿针引线法:右上穿入,奇过偶不过
②一个点不可能同时为极值点和拐点:若为极值点,则不会是拐点。若为拐点,则不会是极值点。
显然2和4是极值点,不是拐点。排除BD
1点的凹凸性没有发生改变,排除A
答案:C
例题2:15年1.
分析:
①拐点的必要条件(可能为拐点的点):f’‘(x)=0或 f’‘(x)不存在。有三个点x=a,x=0,x=b
②拐点的充分条件:f’‘(x)在该点处左右的负号改变,显然排除x=a,剩余两个x=0,x=b满足f’'(x)负号改变,是拐点
答案:C
例题3:武忠祥老师每日一题 24.Day66. 拐点是一个二维坐标
分析: 求拐点:二阶导=0
化简可得
y
′
′
=
10
9
x
−
4
3
(
x
+
1
)
y''=\dfrac{10}{9}x^{-\frac{4}{3}}(x+1)
y′′=910x−34(x+1)
可能为拐点(拐点的必要条件):f’‘(x)=0或f’‘(x)不存在
f’‘(x)=0:x=-1
f’'(x)不存在:x=0
充分条件2:f’‘(x)在 x 0 x_0 x0两侧变号,可见y’'在-1左右变号,在0左右不变号。则(-1,-6)是拐点
答案: ( − 1 , − 6 ) (-1,-6) (−1,−6)
例题4:武每日一题Day68
分析:
答案:C
3.曲线的渐近线
(1)渐近线的本质:割线的极限位置
(2)分析顺序:①铅直渐渐线→ ②水平渐近线(双向)→ ③斜渐近线(双向)
(3)铅直渐近线可以有无数条,而 水平渐近线+斜渐近线 最多只能有2条,为x轴的正向和负向
①水平渐近线 (双向)
水平渐近线有+∞和-∞两个方向
若有
lim
x
→
+
∞
f
(
x
)
=
c
\lim\limits_{x→+∞}f(x)=c
x→+∞limf(x)=c 或者
lim
x
→
−
∞
f
(
x
)
=
c
\lim\limits_{x→-∞}f(x)=c
x→−∞limf(x)=c
则称
y
=
c
y=c
y=c为曲线
y
=
f
(
x
)
y=f(x)
y=f(x)的水平渐近线
②铅直渐近线 (找无穷间断点)
有无穷间断点a,则 x=a 为曲线的铅直渐近线
③斜渐近线 (双向)
斜渐近线也有+∞和-∞两个方向。有该方向上的水平渐近线,则无该方向上的斜渐近线。即,水平渐近线 + 斜渐近线 ≤ 2
若有
lim
x
→
+
∞
f
(
x
)
x
=
a
≠
0
\lim\limits_{x→+∞}\dfrac{f(x)}{x}=a≠0
x→+∞limxf(x)=a=0 且
lim
x
→
+
∞
(
f
(
x
)
−
a
x
)
=
b
\lim\limits_{x→+∞}(f(x)-ax)=b
x→+∞lim(f(x)−ax)=b
或者
lim
x
→
−
∞
f
(
x
)
x
=
a
≠
0
\lim\limits_{x→-∞}\dfrac{f(x)}{x}=a≠0
x→−∞limxf(x)=a=0 且
lim
x
→
−
∞
(
f
(
x
)
−
a
x
)
=
b
\lim\limits_{x→-∞}(f(x)-ax)=b
x→−∞lim(f(x)−ax)=b
则称
y
=
a
x
+
b
y=ax+b
y=ax+b为曲线
y
=
f
(
x
)
y=f(x)
y=f(x)的斜渐近线
例题1:23年1.
分析:
解法1:按照普通方法算
解法2:快速求斜渐近线,用
y
=
a
x
+
b
+
α
(
x
)
y=ax+b+α(x)
y=ax+b+α(x):
答案:B
例题2:07年2.
解法1:传统方法
解法2:快速求斜渐近线,用
y
=
a
x
+
b
+
α
(
x
)
y=ax+b+α(x)
y=ax+b+α(x):
答案:D
例题3:23李林六(六)13. 极坐标方程求斜渐近线
分析:将x、y用极坐标表示出来
答案: y = 3 x + 2 3 y=\sqrt{3}x+\dfrac{2}{3} y=3x+32
④快速求 斜渐近线 的方法: y = a x + b + α ( x ) , α ( x ) → 0 y=ax+b+α(x),α(x)→0 y=ax+b+α(x),α(x)→0
若 y = f ( x ) = a x + b + α ( x ) , α ( x ) → 0 y=f(x)=ax+b+α(x),α(x)→0 y=f(x)=ax+b+α(x),α(x)→0【线性函数+无穷小量】。则 y = f ( x ) y=f(x) y=f(x) 有斜渐近线 y = a x + b y=ax+b y=ax+b
例题1:24李林六(五)11. 快速求斜渐近线
分析:极限脱帽法
答案: y = x + 1 y=x+1 y=x+1
例题2:14年1. 快速求斜渐近线
解法1:
传统方法,一个个求
函数f(x) | 铅直 | 水平 | 斜 |
---|---|---|---|
A : y = x + sin x A:y=x+\sin x A:y=x+sinx | × | × | × 有a无b。a=1 |
B : y = x 2 + sin x B:y=x²+\sin x B:y=x2+sinx | × | × | × 无a |
C : y = x + sin 1 x C:y=x+\sin\dfrac{1}{x} C:y=x+sinx1 | × | × | √ 有a有b。y=x |
D : y = x 2 + sin 1 x D:y=x²+\sin\dfrac{1}{x} D:y=x2+sinx1 | × | × | × 无a |
解法2:快速求斜渐近线
y
=
a
x
+
b
+
α
(
x
)
(
x
→
∞
,
α
(
x
)
→
0
)
y=ax+b+α(x) \quad (x→∞,α(x)→0)
y=ax+b+α(x)(x→∞,α(x)→0)
分析:斜渐近线最难求,用
y
=
a
x
+
b
+
α
(
x
)
y=ax+b+α(x)
y=ax+b+α(x)判断谁有斜渐近线
显然,C的
y
=
x
+
sin
1
x
y=x+\sin\dfrac{1}{x}
y=x+sinx1符合
y
=
a
x
+
b
+
α
(
x
)
y=ax+b+α(x)
y=ax+b+α(x),即C有斜渐近线y=x
答案:C
例题3:17年数二 快速求斜渐近线
【类似23年1.】
4.平面曲线的曲率
曲线的弧微分、曲率K,曲率半径R
曲率的定义:描述函数在一点处的弯曲程度。 K = lim Δ s → 0 ∣ Δ α Δ s ∣ K=\lim\limits_{Δs→0}|\dfrac{Δα}{Δs}| K=Δs→0lim∣ΔsΔα∣
曲率的计算: K = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 K=\dfrac{|y''|}{(1+y'^2)^{\frac{3}{2}}} K=(1+y′2)23∣y′′∣
曲率半径: R = 1 K R=\dfrac{1}{K} R=K1
例题1:23李林六(五)1.
分析:
答案:C
5.切线方程: Y − f ( x ) = f ′ ( x ) ( X − x ) Y-f(x)=f'(x)(X-x) Y−f(x)=f′(x)(X−x)
例题1:24李林四(一)20.