高数:Ch3.微分中值定理与导数应用

文章目录

Ch3.微分中值定理与导数应用

一、考试内容概要:
(一) 微分中值定理
(二) 导数的应用

二、常考题型与典型例题
题型一:求极限、函数的单调性、求函数的极值和最值 【基础】
题型二:确定曲线的凹向与拐点、求曲线的渐近线、曲率 【基础】
题型三:方程的根的存在性及个数 【中等】
题型四:不等式的证明:证明函数不等式、证明常数不等式(转换为函数不等式) 【中等】
题型五:微分中值定理的证明题 【有难度】

在这里插入图片描述


(一) 微分中值定理

1.微分中值定理

在这里插入图片描述


0.费马引理

在这里插入图片描述

在这里插入图片描述



1.罗尔定理

罗尔定理:如果函数f(x)满足:
(1)在闭区间 [ a , b ] [a,b] [a,b] 上连续
(2)在开区间 ( a , b ) (a,b) (a,b) 内可导
(3)在区间端点处的函数值相等,即 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)
那么在开区间 ( a , b ) (a,b) (a,b) 内至少有一点 ξ ( a < ξ < b ) ξ (a<ξ<b) ξ(a<ξ<b),使得 f ′ ( ξ ) = 0 f'(ξ)=0 f(ξ)=0 ∃ ξ ∈ ( a , b ) ,使 f ′ ( ξ ) = 0 \existξ∈(a,b),使 f'(ξ)=0 ξ(a,b),使f(ξ)=0

在这里插入图片描述



例题1:
在这里插入图片描述


例题2:一点处导数:邻域内增减性
在这里插入图片描述




2.拉格朗日中值定理

若函数f(x)满足:
(1)在闭区间 [ a , b ] [a,b] [a,b] 上连续
(2)在开区间 ( a , b ) (a,b) (a,b) 内可导
那么在开区间 ( a , b ) (a,b) (a,b) 内至少有一点ξ (a<ξ<b),使如下等式成立:ョξ∈(a,b),使得
f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) ( a < ξ < b ) 或 f ′ ( ξ ) = f ( b ) − f ( a ) b − a ( a < ξ < b ) f(b)-f(a)=f'(ξ)(b-a)\qquad (a<ξ<b)\\[5mm] 或 \qquad f'(ξ)=\dfrac{f(b)-f(a)}{b-a}\qquad (a<ξ<b) f(b)f(a)=f(ξ)(ba)(a<ξ<b)f(ξ)=baf(b)f(a)(a<ξ<b)
在这里插入图片描述
在这里插入图片描述

1.罗尔定理与拉格朗日中值定理的关系:
①罗尔定理是拉格朗日中值定理的特例:f(a)=f(b),则f’(ξ)=0
②拉格朗日中值定理是罗尔定理的推广


2.拉朗转化功能
f ( b ) − f ( a ) b − a \dfrac{f(b)-f(a)}{b-a} baf(b)f(a)不会操作,转化为 f ′ ( ξ ) f'(ξ) f(ξ)
f ( b ) − f ( a ) f(b)-f(a) f(b)f(a)不好操作,转化为 ( b − a ) f ′ ( ξ ) (b-a)f'(ξ) (ba)f(ξ)
f ′ ( b ) − f ′ ( a ) f'(b)-f'(a) f(b)f(a)不好操作,转化为 ( b − a ) f ′ ′ ( ξ ) (b-a)f''(ξ) (ba)f′′(ξ)


3.证明拉格朗日中值定理:构造辅助函数F(x)=f(x)-g(x),用罗尔定理F(a)=F(b)=0
【其中f(x)为原曲线,g(x)为弦AB,以点A求AB的直线方程】
在这里插入图片描述



3.柯西中值定理

在这里插入图片描述

证明:①是传统的辅助函数,但难于验证F(a)=F(b)   ②是更好的辅助函数,更易得F(a)=F(b)
在这里插入图片描述


4.泰勒中值定理 (泰勒公式拉格朗日余项)

在这里插入图片描述

佩阿诺余项:局部性态,研究极限
拉格朗日余弦:整体性态,研究中值定理


5.总结

1.四大中值定理的本质
①罗尔、拉朗、柯西 三者建立了函数值与一阶导数的联系 f ( x ) ⇦⇨ f ′ ( x ) f(x)⇦⇨f'(x) f(x)⇦⇨f(x)。给函数,证导数 / 给导数,证函数。
②泰勒中值定理:函数值 f ( x ) f(x) f(x)与高阶导数 f ( n ) ( x ) f^{(n)}(x) f(n)(x)

2.四者的关系:
罗尔定理 ⇌ 推广 特例 拉格朗日中值定理 ⇌ 推广 特例 柯西中值定理 罗尔定理 \underset{特例}{\xrightleftharpoons{推广}} 拉格朗日中值定理\underset{特例}{\xrightleftharpoons{推广}}柯西中值定理 罗尔定理特例推广 拉格朗日中值定理特例推广 柯西中值定理
但是,拉朗和柯西都是通过 罗尔定理+构造辅助函数 证明出来的

在这里插入图片描述


6.微分中值定理的证明题
(0)常用导数恒等式

(1) [ x f ( x ) ] ′ = f ( x ) + x f ′ ( x ) [xf(x)]'=f(x)+xf'(x) [xf(x)]=f(x)+xf(x)

(2) [ x n f ( x ) ] ′ = n x n − 1 f ( x ) + x n f ′ ( x ) = x n − 1 [ n f ( x ) + x f ′ ( x ) ] [x^nf(x)]'=nx^{n-1}f(x)+x^nf'(x)=x^{n-1}[nf(x)+xf'(x)] [xnf(x)]=nxn1f(x)+xnf(x)=xn1[nf(x)+xf(x)]

(3) [ f ( x ) x ] ′ = x f ′ ( x ) − f ( x ) x 2 [\dfrac{f(x)}{x}]'=\dfrac{xf'(x)-f(x)}{x^2} [xf(x)]=x2xf(x)f(x)

(4) [ f ( x ) x n ] ′ = x n f ′ ( x ) − n x n − 1 f ( x ) x 2 n = x f ′ ( x ) − n f ( x ) x n + 1 [\dfrac{f(x)}{x^n}]'=\dfrac{x^nf'(x)-nx^{n-1}f(x)}{x^{2n}}=\dfrac{xf'(x)-nf(x)}{x^{n+1}} [xnf(x)]=x2nxnf(x)nxn1f(x)=xn+1xf(x)nf(x)

(5) [ e λ x f ( x ) ] ′ = λ e λ x f ( x ) + e λ x f ′ ( x ) = e λ x [ f ′ ( x ) + λ f ( x ) ] [e^{λx}f(x)]'=λe^{λx}f(x)+e^{λx}f'(x)=e^{λx}[f'(x)+λf(x)] [eλxf(x)]=λeλxf(x)+eλxf(x)=eλx[f(x)+λf(x)]

(6) [ e − λ x f ( x ) ] ′ = − λ e λ x f ( x ) + e − λ x f ′ ( x ) = e − λ x [ f ′ ( x ) − λ f ( x ) ] [e^{-λx}f(x)]'=-λe^{λx}f(x)+e^{-λx}f'(x)=e^{-λx}[f'(x)-λf(x)] [eλxf(x)]=λeλxf(x)+eλxf(x)=eλx[f(x)λf(x)]

(7) [ f ( x ) f ′ ( x ) ] ′ = [ f ′ ( x ) ] 2 + f ( x ) f ′ ′ ( x ) [f(x)f'(x)]'=[f'(x)]^2+f(x)f''(x) [f(x)f(x)]=[f(x)]2+f(x)f′′(x)


(1)单中值:证明存在一个点ξ∈(a,b),使 g [ ξ , f ( ξ ) , f ′ ( ξ ) ] = 0 g[ξ,f(ξ),f'(ξ)]=0 g[ξ,f(ξ),f(ξ)]=0

方法:构造辅助函数,用罗尔定理

构造辅助函数的三种方法:
1.分析法(还原法)
观察分析,确定辅助函数F(x),使得 F ′ ( x ) = g [ ξ , f ( ξ ) , f ′ ( ξ ) ] F'(x)=g[ξ,f(ξ),f'(ξ)] F(x)=g[ξ,f(ξ),f(ξ)]。且F(x)有两个端点函数值相等,用罗尔定理可得 F ′ ( x ) = g [ ξ , f ( ξ ) , f ′ ( ξ ) ] = 0 F'(x)=g[ξ,f(ξ),f'(ξ)]=0 F(x)=g[ξ,f(ξ),f(ξ)]=0


2.微分方程法
①求微分方程 g [ x , y , y ′ ] = 0 g[x,y,y']=0 g[x,y,y]=0的通解 H ( x , y ) = C H(x,y)=C H(x,y)=C
②设辅助函数: F ( x ) = H ( x , f ( x ) ) F(x)=H(x,f(x)) F(x)=H(x,f(x))


3.常用辅助函数:【辅导讲义P79】
ξ f ′ ( ξ ) + n f ( ξ ) = 0 ξf'(ξ)+nf(ξ)=0 ξf(ξ)+nf(ξ)=0,令 F ( x ) = x n f ( x ) F(x)=x^nf(x) F(x)=xnf(x)

ξ f ′ ( ξ ) − n f ( ξ ) = 0 ξf'(ξ)-nf(ξ)=0 ξf(ξ)nf(ξ)=0,令 F ( x ) = f ( x ) x n F(x)=\dfrac{f(x)}{x^n} F(x)=xnf(x)

f ′ ( ξ ) + λ f ( ξ ) = 0 f'(ξ)+λf(ξ)=0 f(ξ)+λf(ξ)=0,令 F ( x ) = e λ x f ( x ) F(x)=e^{λx}f(x) F(x)=eλxf(x)

f ′ ( ξ ) + g ( ξ ) f ( ξ ) = 0 f'(ξ)+g(ξ)f(ξ)=0 f(ξ)+g(ξ)f(ξ)=0,令 F ( x ) = e ∫ g ( x ) d x f ( x ) F(x)=e^{\int g(x)dx}f(x) F(x)=eg(x)dxf(x)


(2)双中值:证明存在两个中值点 ξ,η∈(a,b),使 g [ ξ , η , f ( ξ ) , f ( η ) , f ′ ( ξ ) , f ′ ( η ) ] = 0 g[ξ,η,f(ξ),f(η),f'(ξ),f'(η)]=0 g[ξ,η,f(ξ),f(η),f(ξ),f(η)]=0

1.方法:
(1)不要求 ξ ≠ η ξ≠η ξ=η
在同一区间[a,b]上用两次中值定理(拉格朗日、柯西中值定理)

(2)要求 ξ ≠ η ξ≠η ξ=η
将区间[a,b]分为两个子区间,在两个子区间上分别用拉格朗日中值定理

难点和关键点:两个子区间上分界点的选取:
①用第一问的结论
②逆推法:先假设一个分界点c,(a,c)和(c,b)上各用一次拉格朗日中值定理,代入要证明的条件,观察 f ( c ) f(c) f(c)的选取。【辅导讲义P83例5】


(3)高阶导数:证明存在一个中值点 ξ∈(a,b),使 g [ ξ , f ( n ) ( ξ ) ] ≥ 0   ( n ≥ 2 ) g[ξ,f^{(n)}(ξ)]≥0 \ (n≥2) g[ξ,f(n)(ξ)]0 (n2)

方法:用带拉格朗日余项的泰勒公式展开点 x 0 x_0 x0选提供函数值和导数值信息多的点。(当提供函数值、提供导数值信息一样多,如都各自提供一个,此时选提供导数值的点展开,然后分别令x=提供函数值的点,代入泰勒公式 【辅导讲义P85例题2】)



例题1:13年18.   中值定理:有两问的问题,考虑把第一问的结论用到第二问上
在这里插入图片描述

分析:
(Ⅰ)拉朗 或 构造辅助函数+罗尔
(Ⅱ)构造函数函数 + 罗尔:
g ′ ( x ) = f ′ ′ ( x ) + f ′ ( x ) − 1 g'(x)=f''(x)+f'(x)-1 g(x)=f′′(x)+f(x)1,∴ g ( x ) = f ′ ( x ) + f ( x ) − x g(x)=f'(x)+f(x)-x g(x)=f(x)+f(x)x
根据f’(x)是偶函数,找到g(1)=g(-1),用罗尔 g’(ξ)=0,得证



例题2:16年19.   拉朗转化功能:有两问的问题,考虑把第一问的结果用到第二问上
在这里插入图片描述

答案:



例题3:880第二章基础大题21 :拉朗转化功能
在这里插入图片描述
答案:
在这里插入图片描述



例题4:2023大题:三次放缩

在这里插入图片描述

例题5:
在这里插入图片描述




2.泰勒公式

泰勒公式的伟大意义:
①建立了函数值与高阶导数之间的联系: f ( x ) ⇦⇨ f ( n ) ( x ) f(x)⇦⇨f^{(n)}(x) f(x)⇦⇨f(n)(x) 【题目出现了n阶导数,应该要想到泰勒公式】
②用多项式逼近。多项式求极限、求导数、求积分都比较简单。

在这里插入图片描述


(1)泰勒中值定理1:佩亚诺余项,局部泰勒公式,用于极限的计算

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + f ′ ′ ′ ( x 0 ) 3 ! ( x − x 0 ) 3 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + o ( ( x − x 0 ) n ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+\dfrac{f'''(x_0)}{3!}(x-x_0)^3+...+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n) f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2+3!f′′′(x0)(xx0)3+...+n!f(n)(x0)(xx0)n+o((xx0)n)

佩亚诺余项(用于计算极限): R n ( x ) = o ( ( x − x 0 ) n ) R_n(x)=o((x-x_0)^n) Rn(x)=o((xx0)n)


(2)泰勒中值定理2:拉格朗日余项,整体泰勒公式,用于证明

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + f ′ ′ ′ ( x 0 ) 3 ! ( x − x 0 ) 3 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+\dfrac{f'''(x_0)}{3!}(x-x_0)^3+...+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x) f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2+3!f′′′(x0)(xx0)3+...+n!f(n)(x0)(xx0)n+Rn(x)

拉格朗日余项(用于证明): R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 ( x 0 < ξ < x ) R_n(x)=\dfrac{f^{(n+1)}(ξ)}{(n+1)!}(x-x_0)^{n+1} (x_0<ξ<x) Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1x0<ξ<x


(3)麦克劳林公式

x 0 = 0 x_0=0 x0=0 f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + f ′ ′ ′ ( 0 ) 3 ! x 3 + . . . + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x)=f(0)+f'(0)x+\dfrac{f''(0)}{2!}x^2+\dfrac{f'''(0)}{3!}x^3+...+\dfrac{f^{(n)}(0)}{n!}x^n+o(x^n) f(x)=f(0)+f(0)x+2!f′′(0)x2+3!f′′′(0)x3+...+n!f(n)(0)xn+o(xn)


原式泰勒展开 (写到3阶)
e x e^x ex 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) 1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+o(x^3) 1+x+2!x2+3!x3+o(x3)
sin ⁡ x \sin x sinx x − x 3 3 ! + x 5 5 ! + o ( x 5 ) x-\dfrac{x³}{3!}+\dfrac{x^5}{5!}+o(x^5) x3!x3+5!x5+o(x5)
cos ⁡ x \cos x cosx 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) 1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}+o(x^4) 12!x2+4!x4+o(x4)
a r c s i n x \rm arcsinx arcsinx x + x 3 3 ! + o ( x 3 ) x+\dfrac{x^3}{3!}+o(x^3) x+3!x3+o(x3)
1 1 − x \dfrac{1}{1-x} 1x1 1 + x + x 2 + x 3 + o ( x 3 ) 1+x+x^2+x^3+o(x^3) 1+x+x2+x3+o(x3)
1 1 + x \dfrac{1}{1+x} 1+x1 1 − x + x 2 − x 3 + o ( x 3 ) 1-x+x^2-x^3+o(x^3) 1x+x2x3+o(x3)
ln ⁡ ( 1 + x ) \ln(1+x) ln(1+x) x − x 2 2 + x 3 3 x-\dfrac{x^2}{2}+\dfrac{x^3}{3} x2x2+3x3 − x 4 4 + . . . + ( − 1 ) n + 1 x n n + o ( x n ) -\dfrac{x^4}{4}+...+(-1)^{n+1}\dfrac{x^n}{n}+o(x^n) 4x4+...+(1)n+1nxn+o(xn)
− ln ⁡ ( 1 − x ) -\ln(1-x) ln(1x) x + x 2 2 + x 3 3 + . . . x+\dfrac{x^2}{2}+\dfrac{x^3}{3}+... x+2x2+3x3+...
1 1 + x 2 \dfrac{1}{1+x^2} 1+x21 1 − x 2 + x 4 − x 6 + . . . 1-x^2+x^4-x^6+... 1x2+x4x6+...
a r c t a n x {\rm arctan}x arctanx x − x 3 3 + x 5 5 + . . . x-\dfrac{x^3}{3}+\dfrac{x^5}{5}+... x3x3+5x5+...
t a n x {\rm tan}x tanx x + x 3 3 + o ( x 3 ) x+\dfrac{x³}{3}+o(x³) x+3x3+o(x3)
( 1 + x ) α (1+x)^α (1+x)α 1 + α x + α ( α − 1 ) 2 ! x 2 + . . . + α ( α − 1 ) . . . ( α − n + 1 ) n ! x n + o ( x n ) 1+αx+\dfrac{α(α-1)}{2!}x^2+...+\dfrac{α(α-1)...(α-n+1)}{n!}x^n+o(x^n) 1+αx+2!α(α1)x2+...+n!α(α1)...(αn+1)xn+o(xn)


例题1:13年1.
在这里插入图片描述

分析: arctan ⁡ x = x − x 3 3 + o ( x 3 ) \arctan x=x-\dfrac{x^3}{3}+o(x^3) arctanx=x3x3+o(x3)
答案:D


例题2:16年12. 用泰勒公式求高阶导数 f ′ ′ ′ ( 0 ) f'''(0) f′′′(0)
在这里插入图片描述

分析:由麦克劳林公式: f ′ ′ ′ ( 0 ) 3 ! = a 3 \dfrac{f'''(0)}{3!}=a_3 3!f′′′(0)=a3
现考虑将 f ( x ) f(x) f(x)泰勒展开求得 a 3 a_3 a3

答案: 1 2 \dfrac{1}{2} 21


例题3:20年9.




3.洛必达法则

(1)洛必达使用的三条件

(1)比值极限为 0 0 \dfrac{0}{0} 00 ∞ ∞ \dfrac{∞}{∞}

(2)分子分母都在 x 0 x_0 x0去心邻域内可导,且分母导数不为0

(3)求导后比值的极限存在 或 为∞


在这里插入图片描述



4.方程的根的存在性及个数

1.根的存在性
①方法一:零点定理
②方法二:罗尔定理


2.根的个数
①方法一:单调性
②方法二:罗尔定理推论

罗尔定理推论:若在区间 I \rm I I f ( n ) ( x ) ≠ 0 f^{(n)}(x)≠0 f(n)(x)=0,则方程 f ( x ) = 0 f(x)=0 f(x)=0 在区间 I \rm I I 上最多有 n n n 个实根


3.做题步骤:
(1)构造函数,令 f ( x ) = . . . f(x)=... f(x)=... 【则 原方程有根 ⇔ \Leftrightarrow f ( x ) = 0 f(x)=0 f(x)=0
(2)求 f ′ ( x ) f'(x) f(x),令 f ′ ( x ) = 0 f'(x)=0 f(x)=0,得驻点
(3)根据驻点分区间讨论单调性



例题1:17年18.   方程的根的存在性
在这里插入图片描述

分析:
(Ⅰ)至少存在一个实根:零点定理 【先 函数极限的局部保号性】
(Ⅱ)至少存在两个不同实根:找3个相等的点,两次罗尔定理 【先 构造辅助函数】



例题2:2011年17.   方程的根的个数
在这里插入图片描述

答案:
在这里插入图片描述



例题3:1996年1,2
在这里插入图片描述

答案:
在这里插入图片描述


例题4:
在这里插入图片描述


例题5:零点定理+单调性
在这里插入图片描述

例题6:罗尔定理证明根的存在性
在这里插入图片描述


例题7:
在这里插入图片描述



5.函数不等式的证明

(1)证明不等式的5种常用方法

单调性
②最大最小值
③拉格朗日中值定理

④泰勒公式
⑤凹凸性


(2)基本不等式

2 π x < \dfrac{2}{π}x< π2x< sin ⁡ x < x < tan ⁡ x , x ∈ ( 0 , π 2 ) \sin x<x<\tan x,x∈(0,\dfrac{π}{2}) sinx<x<tanxx(0,2π)

x 1 + x < ln ⁡ ( 1 + x ) < x \dfrac{x}{1+x}<\ln(1+x)<x 1+xx<ln(1+x)<x x ∈ ( 0 , + ∞ ) x∈(0,+∞) x(0,+)   ⇨   1 n + 1 < ln ⁡ ( 1 + 1 n ) < 1 n \dfrac{1}{n+1}<\ln(1+\dfrac{1}{n})<\dfrac{1}{n} n+11<ln(1+n1)<n1

1 + x ≤ e x 1+x≤e^x 1+xex

④放缩常用不等式:
∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ ≤ 2 max ⁡ { ∣ a ∣ , ∣ b ∣ } |a±b|≤|a|+|b|≤2\max\{|a|,|b|\} a±ba+b2max{a,b}

2 a b ≤ a 2 + b 2 2ab≤a^2+b^2 2aba2+b2



例题1:12年15.   证明函数不等式:构造辅助函数 + 单调性
在这里插入图片描述

分析:f’‘(x)>0 ∴f’(x)单增 ∴f’(x)>f’(0)=0 ∴f(x)单增 ∴f(x)>f(0)=0

答案:略


例题2:武忠祥老师每日一题Day79   证明函数不等式:最大最小值
在这里插入图片描述

答案:构造函数、求导、单调区间、极值最值
在这里插入图片描述


例题3:拉格朗日中值定理 证明不等式
在这里插入图片描述

例题4:单调性 证明不等式
在这里插入图片描述

例题5:
在这里插入图片描述





(二) 导数应用

1.函数的单调性与极值、最值

(1)函数的极值

1.极值的定义
设函数f(x)在点 x 0 x_0 x0的某邻域 U ( x 0 ) U(x_0) U(x0)内有定义,如果对于去心邻域 U ˚ ( x 0 ) Ů(x_0) U˚(x0)内的任一x,【极值是局部形态】
恒有 f ( x ) < f ( x 0 ) f(x)<f(x_0) f(x)<f(x0),则称 x 0 x_0 x0 f ( x ) f(x) f(x)的一个极大值点,称 f ( x 0 ) f(x_0) f(x0)是函数 f ( x ) f(x) f(x)的一个极大值。
恒有 f ( x ) > f ( x 0 ) f(x)>f(x_0) f(x)>f(x0),则称 x 0 x_0 x0 f ( x ) f(x) f(x)的一个极小值点,称 f ( x 0 ) f(x_0) f(x0)是函数 f ( x ) f(x) f(x)的一个极小值。

函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点。

极大值可能小于极小值,没有大小关系

在这里插入图片描述



2.极值的判定
(1)极值的必要条件
y = f ( x ) y=f(x) y=f(x),① x 0 x_0 x0是极值点 + ② f ( x ) f(x) f(x)在点 x 0 x_0 x0处可导 ⇨ x 0 x_0 x0是驻点,即 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0
【意思是:①可导函数f(x)的极值点,一定是它的驻点。②驻点不一定是极值点,如f(x)=x³ ③函数f(x)的极值点,不一定是它的驻点,因为极值点处可能不可导。如f(x)=|x|】

(1)可能的极值点:
①驻点,即 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0
②不可导点,即 f ′ ( x 0 ) f'(x_0) f(x0)不存在
(2)普通函数f(x)的极值点与驻点没有关系
在这里插入图片描述


(2)极值的充分条件:
极值第一充分条件 x 0 x_0 x0两侧:① f ′ ( x ) f'(x) f(x)变号 或 f ( x ) f(x) f(x)单调性相反
Ⅰ.极大值 f ′ ( x ) f'(x) f(x)由正变负 或 f ( x ) f(x) f(x)由单增变单减
Ⅱ.极小值 f ′ ( x ) f'(x) f(x)由负变正 或 f ( x ) f(x) f(x)由单减变单增
Ⅲ.没有极值 f ′ ( x ) f'(x) f(x)不变号 或 f ( x ) f(x) f(x)单调性不变


极值第二充分条件
设函数f(x)在 x 0 x_0 x0处具有二阶导数且 f ′ ( x 0 ) = 0 , f ′ ′ ( x 0 ) ≠ 0 f'(x_0)=0,f''(x_0)≠0 f(x0)=0,f′′(x0)=0,则
Ⅰ.当 f ′ ( x 0 ) = 0 , f ′ ′ ( x 0 ) < 0 f'(x_0)=0,f''(x_0)<0 f(x0)=0f′′(x0)<0时,函数f(x)在 x 0 x_0 x0处取得极大值
Ⅱ.当 f ′ ( x 0 ) = 0 , f ′ ′ ( x 0 ) > 0 f'(x_0)=0,f''(x_0)>0 f(x0)=0f′′(x0)>0时,函数f(x)在 x 0 x_0 x0处取得极小值


极值第三充分条件
y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0的某邻域内有n阶导数,且
f ′ ( x 0 ) = f ′ ′ ( x 0 ) = . . . = f ( n − 1 ) ( x 0 ) = 0 f'(x_0)=f''(x_0)=...=f^{(n-1)}(x_0)=0 f(x0)=f′′(x0)=...=f(n1)(x0)=0,但 f ( n ) ( x 0 ) ≠ 0 f^{(n)}(x_0)≠0 f(n)(x0)=0,则
(1)n为偶数,则 x 0 x_0 x0 f ( x ) f(x) f(x)极值点。且 f ( n ) ( x 0 ) > 0 f^{(n)}(x_0)>0 f(n)(x0)>0为极小值, f ( n ) ( x 0 ) < 0 f^{(n)}(x_0)<0 f(n)(x0)<0为极大值
(2)n为奇数,f(x)在 x 0 x_0 x0处无极值,但 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为曲线y=f(x)的拐点

在这里插入图片描述



例题1:03年7.
在这里插入图片描述

分析:极值点驻点 ( f ′ ( x 0 ) = 0 ) (f'(x₀)=0) (f(x0)=0)或者不可导点 ( f ′ ( x 0 ) 不存在 ) (f'(x₀)不存在) (f(x0)不存在)

从左到右依次为:驻点a,驻点b,不可导点0,驻点c
显然:
①驻点a为极大值点
②驻点b为极小值点
③不可导点0,由极值的第一充分条件,得x=0为极大值点
④驻点c为极小值点

答案:C


例题2:武24 D67   极值第二充分条件: f ′ ′ ( x ) > 0 ,极小值 f''(x)>0,极小值 f′′(x)>0,极小值
在这里插入图片描述
分析:

答案:B




(2)函数的最大值、最小值

1.求连续函数f(x)在闭区间[a,b]上的最值:
①求出(a,b)内所有驻点和不可导点
②求出驻点函数值、不可导点函数值、端点函数值。
③比较大小,最大的为最大值,最小的最小值

注:若函数f(x)在(a,b)内仅有唯一极值点,则唯一极值点处就取得最值


2.最大最小值应用题:
①建立目标函数
②求最大值最小值



例题1:转换目标函数
在这里插入图片描述




2.曲线的凹凸性与拐点

(1)凹凸性

(1)凹:判定方法:
①定义: f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 f(\dfrac{x_1+x_2}{2})<\dfrac{f(x_1)+f(x_2)}{2} f(2x1+x2)<2f(x1)+f(x2)
②二阶导: f ′ ′ ( x ) > 0 f''(x)>0 f′′(x)>0
③曲线形状: 曲线是凹的


(2)凸:判定方法:
①定义: f ( x 1 + x 2 2 ) > f ( x 1 ) + f ( x 2 ) 2 f(\dfrac{x_1+x_2}{2})>\dfrac{f(x_1)+f(x_2)}{2} f(2x1+x2)>2f(x1)+f(x2)
②二阶导: f ′ ′ ( x ) < 0 f''(x)<0 f′′(x)<0
③曲线形状: 曲线是凸的


在这里插入图片描述


(2)拐点

在这里插入图片描述

1.拐点的定义 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))是曲线上的点,一对坐标。
拐点 x 0 x_0 x0两侧凹凸性改变:凹→凸、凸→凹


2.拐点的判定:(一个必要,三个充分)
(1)拐点的必要条件 f ′ ′ ( x 0 ) = 0 f''(x_0)=0 f′′(x0)=0 f ′ ′ ( x 0 ) f''(x_0) f′′(x0)不存在
(2)拐点的充分条件:
拐点的第一充分条件 x 0 x_0 x0左右两侧 f ′ ′ ( x ) f''(x) f′′(x) 异号 或 f ′ ( x ) f'(x) f(x) x 0 x_0 x0两侧单调性相反
拐点的第二充分条件 f ′ ′ ( x 0 ) = 0 , f ′ ′ ′ ( x 0 ) ≠ 0 f''(x_0)=0,f'''(x_0)≠0 f′′(x0)=0f′′′(x0)=0
拐点的第三充分条件:若 f ′ ′ ( x 0 ) = f ′ ′ ′ ( x 0 ) = . . . = f ( n − 1 ) ( x 0 ) = 0 f''(x_0)=f'''(x_0)=...=f^{(n-1)}(x_0)=0 f′′(x0)=f′′′(x0)=...=f(n1)(x0)=0,但 f ( n ) ( x 0 ) ≠ 0 f^{(n)}(x_0)≠0 f(n)(x0)=0,n为奇数【最高次导数为奇数阶导数不为0,为拐点】【2到n-1阶导为0,不要求1阶导为0】

奇数阶导数不为0:拐点  ;举例: f ′ ( x 0 ) = f ′ ′ ( x 0 ) = f ′ ′ ′ ( x 0 ) = f ( 4 ) ( x 0 ) = 0 , f ( 5 ) ( x 0 ) ≠ 0 f'(x_0)=f''(x_0)=f'''(x_0)=f^{(4)}(x_0)=0,f^{(5)}(x_0)≠0 f(x0)=f′′(x0)=f′′′(x0)=f(4)(x0)=0,f(5)(x0)=0,则 x 0 x_0 x0为拐点
偶数阶导数不为0:极值点  ;举例: f ′ ( x 0 ) = f ′ ′ ( x 0 ) = f ′ ′ ′ ( x 0 ) = 0 , f ( 4 ) ( x 0 ) ≠ 0 f'(x_0)=f''(x_0)=f'''(x_0)=0,f^{(4)}(x_0)≠0 f(x0)=f′′(x0)=f′′′(x0)=0,f(4)(x0)=0,则 x 0 x_0 x0为极值点


3.极值点 vs 拐点:
(1)极值点是x轴上的点 x = x 0 x=x_0 x=x0,拐点是曲线上的点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)
(2)点的必要条件、第一第二充分条件,就是极值的必要条件、第一第二充分条件抬高一阶
(3)①可导函数的可导的点,不能同时出现极值点和拐点: x 0 x_0 x0若为极值点,则 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))不会是拐点。若 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为拐点,则 x 0 x_0 x0不会是极值点。
不可导的点(如分段函数分界点),可以同时出现极值点和拐点
即, f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0不可导, x = x 0 x=x_0 x=x0 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))可以同时是 y = f ( x ) y=f(x) y=f(x)的极值点与拐点。 【660 T161】



例题1:11年1.   拐点:曲线的凹凸性改变,且不是极值点
在这里插入图片描述

分析:① 穿针引线法:右上穿入,奇过偶不过
②一个点不可能同时为极值点和拐点:若为极值点,则不会是拐点。若为拐点,则不会是极值点。

显然2和4是极值点,不是拐点。排除BD
1点的凹凸性没有发生改变,排除A

答案:C


例题2:15年1.
在这里插入图片描述

分析:
①拐点的必要条件(可能为拐点的点):f’‘(x)=0或 f’‘(x)不存在。有三个点x=a,x=0,x=b
②拐点的充分条件:f’‘(x)在该点处左右的负号改变,显然排除x=a,剩余两个x=0,x=b满足f’'(x)负号改变,是拐点

答案:C


例题3:武忠祥老师每日一题 24.Day66.   拐点是一个二维坐标
在这里插入图片描述
分析: 求拐点:二阶导=0

化简可得 y ′ ′ = 10 9 x − 4 3 ( x + 1 ) y''=\dfrac{10}{9}x^{-\frac{4}{3}}(x+1) y′′=910x34(x+1)
可能为拐点(拐点的必要条件):f’‘(x)=0或f’‘(x)不存在
f’‘(x)=0:x=-1
f’'(x)不存在:x=0

充分条件2:f’‘(x)在 x 0 x_0 x0两侧变号,可见y’'在-1左右变号,在0左右不变号。则(-1,-6)是拐点

答案: ( − 1 , − 6 ) (-1,-6) (1,6)


例题4:武每日一题Day68
在这里插入图片描述

分析:

答案:C



3.曲线的渐近线

(1)渐近线的本质:割线的极限位置
(2)分析顺序:①铅直渐渐线→ ②水平渐近线(双向)→ ③斜渐近线(双向)
(3)铅直渐近线可以有无数条,而 水平渐近线+斜渐近线 最多只能有2条,为x轴的正向和负向


①水平渐近线 (双向)

水平渐近线有+∞和-∞两个方向

若有 lim ⁡ x → + ∞ f ( x ) = c \lim\limits_{x→+∞}f(x)=c x+limf(x)=c 或者 lim ⁡ x → − ∞ f ( x ) = c \lim\limits_{x→-∞}f(x)=c xlimf(x)=c
则称 y = c y=c y=c为曲线 y = f ( x ) y=f(x) y=f(x)的水平渐近线


②铅直渐近线 (找无穷间断点)

在这里插入图片描述

有无穷间断点a,则 x=a 为曲线的铅直渐近线


斜渐近线 (双向)

斜渐近线也有+∞和-∞两个方向。有该方向上的水平渐近线,则无该方向上的斜渐近线。即,水平渐近线 + 斜渐近线 ≤ 2

若有 lim ⁡ x → + ∞ f ( x ) x = a ≠ 0 \lim\limits_{x→+∞}\dfrac{f(x)}{x}=a≠0 x+limxf(x)=a=0 lim ⁡ x → + ∞ ( f ( x ) − a x ) = b \lim\limits_{x→+∞}(f(x)-ax)=b x+lim(f(x)ax)=b
或者 lim ⁡ x → − ∞ f ( x ) x = a ≠ 0 \lim\limits_{x→-∞}\dfrac{f(x)}{x}=a≠0 xlimxf(x)=a=0 lim ⁡ x → − ∞ ( f ( x ) − a x ) = b \lim\limits_{x→-∞}(f(x)-ax)=b xlim(f(x)ax)=b
则称 y = a x + b y=ax+b y=ax+b为曲线 y = f ( x ) y=f(x) y=f(x)的斜渐近线



例题1:23年1.
在这里插入图片描述

分析:
解法1:按照普通方法算
在这里插入图片描述

解法2:快速求斜渐近线,用 y = a x + b + α ( x ) y=ax+b+α(x) y=ax+b+α(x)
在这里插入图片描述

答案:B


例题2:07年2.
在这里插入图片描述

解法1:传统方法
在这里插入图片描述

解法2:快速求斜渐近线,用 y = a x + b + α ( x ) y=ax+b+α(x) y=ax+b+α(x)
在这里插入图片描述

答案:D


例题3:23李林六(六)13.   极坐标方程求斜渐近线
在这里插入图片描述
分析:将x、y用极坐标表示出来
在这里插入图片描述

答案: y = 3 x + 2 3 y=\sqrt{3}x+\dfrac{2}{3} y=3 x+32




快速求 斜渐近线 的方法: y = a x + b + α ( x ) , α ( x ) → 0 y=ax+b+α(x),α(x)→0 y=ax+b+α(x)α(x)0

y = f ( x ) = a x + b + α ( x ) , α ( x ) → 0 y=f(x)=ax+b+α(x),α(x)→0 y=f(x)=ax+b+α(x)α(x)0【线性函数+无穷小量】。则 y = f ( x ) y=f(x) y=f(x) 有斜渐近线 y = a x + b y=ax+b y=ax+b



例题1:24李林六(五)11.   快速求斜渐近线
在这里插入图片描述

分析:极限脱帽法
在这里插入图片描述

答案: y = x + 1 y=x+1 y=x+1


例题2:14年1.   快速求斜渐近线
在这里插入图片描述
解法1:
传统方法,一个个求

函数f(x)铅直水平
A : y = x + sin ⁡ x A:y=x+\sin x Ay=x+sinx××× 有a无b。a=1
B : y = x 2 + sin ⁡ x B:y=x²+\sin x By=x2+sinx××× 无a
C : y = x + sin ⁡ 1 x C:y=x+\sin\dfrac{1}{x} Cy=x+sinx1××√ 有a有b。y=x
D : y = x 2 + sin ⁡ 1 x D:y=x²+\sin\dfrac{1}{x} Dy=x2+sinx1××× 无a

解法2:快速求斜渐近线 y = a x + b + α ( x ) ( x → ∞ , α ( x ) → 0 ) y=ax+b+α(x) \quad (x→∞,α(x)→0) y=ax+b+α(x)(xα(x)0)
分析:斜渐近线最难求,用 y = a x + b + α ( x ) y=ax+b+α(x) y=ax+b+α(x)判断谁有斜渐近线
显然,C的 y = x + sin ⁡ 1 x y=x+\sin\dfrac{1}{x} y=x+sinx1符合 y = a x + b + α ( x ) y=ax+b+α(x) y=ax+b+α(x),即C有斜渐近线y=x
在这里插入图片描述
答案:C


例题3:17年数二   快速求斜渐近线
【类似23年1.】
在这里插入图片描述




4.平面曲线的曲率

曲线的弧微分、曲率K,曲率半径R

曲率的定义:描述函数在一点处的弯曲程度。 K = lim ⁡ Δ s → 0 ∣ Δ α Δ s ∣ K=\lim\limits_{Δs→0}|\dfrac{Δα}{Δs}| K=Δs0limΔsΔα

曲率的计算: K = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 K=\dfrac{|y''|}{(1+y'^2)^{\frac{3}{2}}} K=(1+y′2)23y′′

曲率半径: R = 1 K R=\dfrac{1}{K} R=K1



例题1:23李林六(五)1.
在这里插入图片描述

分析:
在这里插入图片描述

答案:C




5.切线方程: Y − f ( x ) = f ′ ( x ) ( X − x ) Y-f(x)=f'(x)(X-x) Yf(x)=f(x)(Xx)



例题1:24李林四(一)20.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员爱德华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值