项目介绍
本项目使用Caltech256来作为训练和测试集。
解压缩该文件,您将看到257个文件夹。每个文件夹对应一个类。使用预先训练的Inception- BatchNorm网络来提取Caltech256训练和测试集中每个图像的特征表示。
本项目包含:
-
Cnn的图像分析的理解
-
“卷积层”和“池化层”的功能
-
Deep CNNs中的名词解释 activation function; epoch number;batch size; learning rate and momentum
-
Caltech256训练和测试集介绍
-
项目代码与输出(R语言)
项目开始
1
深度卷积神经网络(CNNs)是一种深度人工神经网络。CNNs是一类特殊的多层感知器,非常适合于网格化的数据处理拓扑。他们是在至少一层中使用卷积代替一般矩阵乘法的网络。它是一种在神经网络设计中建立先验信息的方法。此外,CNN有时被设计成识别二维形状,对平移、缩放、倾斜和其他扭曲具有高度的不变性。
由于CNNs具有较好的性能、精度和对输入图像的一定程度的无失真性,因此适合于图像分析任务。常规NNs的问题是它们不能很好地随维度扩展。CNNs集成了一个可用于内置网络的分层模型,并最终指向一个完全连接的层,在该层中所有神经元相互连接并处理输出。CNNs能有效地将大量数据参数的图像维数降为少量参数,同时有效地保留图像特征。
NNS对图像失真非常敏感,忽略了输入数据的拓扑结构,在一定程度上避免了这些问题。CNNs考虑了神经元的三维体积,提出了一种参数共享方案,使网络所