数据科学与大数据分析之项目6-CNN模型图像分类

本项目介绍使用预训练的Inception-BatchNorm网络对Caltech256数据集进行图像分类,探讨CNN的卷积层、池化层、激活函数、epoch数量、batch大小、学习率和动量等概念。训练集包含257个类别,测试集具有更复杂的场景,以模拟真实世界的图像分类挑战。
摘要由CSDN通过智能技术生成

用预先训练好的CNN模型进行图像分类

项目介绍

本项目使用Caltech256来作为训练和测试集。

解压缩该文件,您将看到257个文件夹。每个文件夹对应一个类。使用预先训练的Inception- BatchNorm网络来提取Caltech256训练和测试集中每个图像的特征表示。

本项目包含:

  1. Cnn的图像分析的理解

  2. “卷积层”和“池化层”的功能

  3. Deep CNNs中的名词解释 activation function; epoch number;batch size; learning rate and momentum

  4. Caltech256训练和测试集介绍

  5. 项目代码与输出(R语言)

项目开始

1
深度卷积神经网络(CNNs)是一种深度人工神经网络。CNNs是一类特殊的多层感知器,非常适合于网格化的数据处理拓扑。他们是在至少一层中使用卷积代替一般矩阵乘法的网络。它是一种在神经网络设计中建立先验信息的方法。此外,CNN有时被设计成识别二维形状,对平移、缩放、倾斜和其他扭曲具有高度的不变性。

由于CNNs具有较好的性能、精度和对输入图像的一定程度的无失真性,因此适合于图像分析任务。常规NNs的问题是它们不能很好地随维度扩展。CNNs集成了一个可用于内置网络的分层模型,并最终指向一个完全连接的层,在该层中所有神经元相互连接并处理输出。CNNs能有效地将大量数据参数的图像维数降为少量参数,同时有效地保留图像特征。

NNS对图像失真非常敏感,忽略了输入数据的拓扑结构,在一定程度上避免了这些问题。CNNs考虑了神经元的三维体积,提出了一种参数共享方案,使网络所

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值