基于深度学习算法(CNN)图像识别模型,根据识别细粒度由粗到细可大致分为三层:
通用图像识别(图像分类,目标检测,语义分割)
细粒度图像识别(车牌识别)
更精准细粒度图像识别(人脸识别)
通用图像识别
基于CNN(卷积神经网络)的模型在深度学习领域,特别是在计算机视觉任务中,扮演着至关重要的角色。经典的数据集有ImageNet,在图像分类的基础上,又衍生出了目标识别,语义分割,实例分割等。以下是一些著名的基于CNN的模型:
1. LeNet-5
特点:
- 早期经典:LeNet-5是早期提出的一个用于手写数字和机器印刷字符识别的卷积神经网络。
- 基础模块:包含了深度学习卷积神经网络的基本模块:卷积层、池化层和全连接层。
- 参数共享:使用参数共享的卷积操作提取图像中像素特征之间的相关性。
使用场景:
- 手写数字识别:主要用于手写数字(如MNIST数据集)的识别。
- 字符识别:也可用于机器印刷字符的识别。
2. AlexNet
特点:
- 里程碑:AlexNet在2012年的ImageNet比赛中获胜,成为深度学习历史上的一个里程碑。
- 大规模数据集:使用了非常大的数据集(ImageNet),包括1000个类别、120万张高分辨率的图像。
- 技术创新:引入了ReLU激活函数、Dropout技术和局部响应归一化(LRN)来减少过拟合,提高模型鲁棒性。
使用场景:
- 图像分类:广泛用于大规模图像分类任务。
- 深度学习研究:作为深度学习研究的基准模型之一。
3. VGGNet
特点:
- 发布时间:VGGNet是2014年ImageNet竞赛的亚军模型。
- 深层结构:建立了一个19层的神经网络,在ILSVRC取得了定位第一、分类第二的成绩。
- 小滤波器:所有卷积层都使用3×3的小滤波器,增加了网络的深度和非线性。
- 多尺度训练:在整个图片和multi-scale上训练和测试图片。
使用场景:
- 图像分类:适用于需要高精度图像分类的任务。
- 特征提取:因其深层结构,也常用于图像特征提取。
4. GoogLeNet
特点:
- 发布时间:GoogLeNet是2014年ImageNet竞赛的冠军模型。
- Inception架构:采用Inception架构,通过并行处理输入数据并合并输出来减少参数数量。
- 深度可分离卷积:使用深度可分离卷积层来提高模型的运行速度和准确率。
- 全局平均池化:使用全局平均池化层来减少数据维度,提高模型的泛化能力。
使用场景:
- 图像分类:在ILSVRC2014挑战赛中取得了优异成绩,适用于大规模图像分类。
- 物体检测:也可用于物体检测等任务。
5. ResNet
特点:
- 残差连接:ResNet是2015年ImageNet竞赛的冠军模型。
- 残差连接:通过引入残差连接解决了深层网络训练过程中的梯度消失和梯度爆炸问题。
- 深度加深:可以构建非常深的网络结构(如152层),而不会导致模型退化。
- 加速训练:使用batch normalization加速训练过程。
使用场景:
- 图像分类:广泛用于图像分类任务,特别是对于需要高精度和深层结构的场景。
- 目标检测:也适用于目标检测等复杂的计算机视觉任务。
6. DenseNet(密集连接网络)
特点:
- 密集连接:DenseNet中的每一层都直接连接到后面的所有层,实现了特征的复用和传递,减少了信息的丢失。
- 参数效率:由于特征的复用,DenseNet在保持高精度的同时,参数数量相对较少。
- 抗过拟合:密集连接增强了特征的传播,减轻了梯度消失问题,同时在一定程度上也起到了正则化的作用,有助于防止过拟合。
使用场景:
- 图像分类:适用于需要高精度和参数效率的图像分类任务。
- 目标检测:也可用于目标检测等复杂计算机视觉任务。
7. MobileNet
特点:
- 轻量级:MobileNet采用深度可分离卷积等技术,大大减少了模型的参数量和计算量,适合在移动设备和嵌入式系统上运行。
- 高效性:在保证一定精度的同时,实现了较高的计算效率和较低的延迟。
使用场景:
- 移动端应用:适用于需要在移动设备上运行的图像分类、人脸识别、物体检测等任务。
- 嵌入式系统:也适用于资源受限的嵌入式系统上的计算机视觉任务。
8. ShuffleNet
特点:
- 分组卷积与通道混洗:ShuffleNet通过分组卷积减少计算量,并通过通道混洗操作增强组间的信息流通,提高模型性能。
- 轻量化设计:与MobileNet类似,ShuffleNet也注重模型的轻量化和高效性。
使用场景:
- 移动端和嵌入式设备:具有轻量化和高效性的特点,因此也适用于移动设备和嵌入式系统。此外,由于其特殊的网络结构和高效的计算方式,ShuffleNet在实时图像分类和物体检测等任务中表现出色。同时,由于其可定制性和易于实现的特点,ShuffleNet也广泛应用于物联网设备、边缘计算等领域。
9. YOLO(You Only Look Once)
特点:
- 实时性:YOLO将目标检测问题转化为回归问题,实现了快速的端到端检测,具有较高的实时性。
- 统一网络:YOLO使用一个统一的网络同时预测边界框和类别概率,简化了检测流程。
使用场景:
- 实时目标检测:适用于需要快速响应的目标检测任务,如视频监控、自动驾驶等。
10. U-Net
特点:
- U形结构:U-Net采用U形网络结构,通过跳跃连接将编码器的特征与解码器的特征相结合,提高了分割精度。
- 大感受野:通过多次下采样和上采样操作,U-Net能够捕获图像中的多尺度信息,具有较大的感受野。
使用场景:
- 医学图像分割:U-Net最初用于医学图像的分割任务,并在此领域取得了显著的成绩。
- 其他图像分割任务:也可用于其他领域的图像分割任务,如卫星图像分割、自然图像分割等。
综上所述,LeNet-5作为早期经典模型,为后来的研究奠定了基础;AlexNet则以其大规模数据集和技术创新引领了深度学习的发展;VGGNet和GoogLeNet通过更深的网络结构和更高效的架构进一步提升了模型的性能;而ResNet则通过残差连接解决了深层网络训练难题,推动了深度学习在计算机视觉领域的广泛应用。