机器学习8:特征组合-Feature Crosses

特征组合,又称特征交叉,是机器学习中增强模型复杂性的方法,尤其适用于处理非线性问题。通过将不同特征进行组合,如交叉One-Hot向量,可以创建新的合成特征,帮助模型捕捉特征间的关系。文章探讨了特征交叉的原因,不同类型的特征交叉,尤其是One-Hot编码的特征交叉,并通过实例说明其在预测分析中的作用。
摘要由CSDN通过智能技术生成

        特征组合也称特征交叉(Feature Crosses),即不同类型或者不同维度特征之间的交叉组合,其主要目的是提高对复杂关系的拟合能力。在特征工程中,通常会把一阶离散特征两两组合,构成高阶组合特征。可以进行组合的特征包括离散特征和连续特征,但是连续特征需要进行一定的处理后才可以进行特征组合。
        为了便于理解,可以将特征组合理解为两个离散特征交叉合并,举个例子:特征 A 有 m 个类别,特征 B 有 n 个类别,则特征 A 和特征 B 的组合就是将特征 A、B 中的各个类别两两组合,其维度为 m*n。很明显,特征组合存在隐患——当一个特征的类别非常多的时候会出现组合特征向量维度极高的情况,这个时候还需要用到降维处理。

目录

1.为什么要进行特征组合?

2.特征交叉的种类

2.1 特征交叉:交叉 One-Hot 向量

3.参考文献


1.为什么要进行特征组合?

在图 1 和图 2 中,想象一下:

  • 蓝点代表生病的树。
  • 橙色点代表健康的树木。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jin_Kwok

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值