机器学习27:使用 Pandas 和 TensorFlow 进行数据建模编程实践

本文详细介绍了如何结合Pandas和TensorFlow处理数据,进行机器学习模型训练。通过探索、预处理数据,然后分别基于未经规范化和规范化处理的数值特征训练模型,展示了数据建模的完整流程。内容包括数据加载、探索、数据转换、模型训练及预测结果可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文将详细介绍基于 Pandas 和 TensorFlow 探索、清理以及转换用于训练模型的数据集的方法,辅以代码和图片。

学习目标:

  • 了解使用 Pandas 进行数据清理和处理丢失数据的基础知识。
  • 使用校准图评估模型性能。
  • 使用各种特征转换训练模型。
  • 使用可视化来了解特征转换的价值。

关于环境搭建,请前往《机器学习6:使用 TensorFlow 的训练线性回归模型》,本文不再赘述。

目录

1.准备工作

1.1 导入依赖模块

1.2 Pandas 基本设置

1.3 用 Pandas 加载数据集

2.任务一:使用 Pandas 探索和准备数据

2.1 探索数据

2.2 准备数据

3. 任务二:基于数字特征(未规范化-Normalization)训练模型

3.1 基于数字特征训练模型

3.2 将模型的预测可视化

3.3 完整代码运行

4.任务三:基于数值特征训练模型(需规范化-Normalization)模型

4.1 特征规范化

4.2 预测结果可视化

5.任务四:基于类别特征来训练模型

6.参考文献


1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jin_Kwok

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值