本文将详细介绍基于 Pandas 和 TensorFlow 探索、清理以及转换用于训练模型的数据集的方法,辅以代码和图片。
学习目标:
- 了解使用 Pandas 进行数据清理和处理丢失数据的基础知识。
- 使用校准图评估模型性能。
- 使用各种特征转换训练模型。
- 使用可视化来了解特征转换的价值。
关于环境搭建,请前往《机器学习6:使用 TensorFlow 的训练线性回归模型》,本文不再赘述。
目录
3. 任务二:基于数字特征(未规范化-Normalization)训练模型
4.任务三:基于数值特征训练模型(需规范化-Normalization)模型