推荐系统(三)使用 TensorFlow 构建电影推荐系统

本文详细介绍了如何利用TensorFlow建立电影推荐系统,包括数据预处理、评分矩阵的稀疏表示、矩阵分解模型的训练、正则化及Softmax模型。通过探索MovieLens数据集,构建协同过滤模型,训练用户和电影的嵌入向量,最终实现电影的推荐功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文将介绍基于 MovieLens 数据集创建一个电影推荐系统的方法。具体而言,包括探索电影数据,训练矩阵分解模型,检查嵌入,矩阵分解中的正则化,Softmax 模型训练等内容。

目录

1.准备工作

1.1 导入依赖模块

1.2 加载数据

1.3 探索电影镜头数据

1.3.1 User 数据

 1.3.2 电影

2.评分矩阵表示和误差计算

2.1 评分矩阵的稀疏表示

2.2 计算误差

3.训练矩阵分解模型

3.1 CFModel 定义

3.2 建立矩阵分解模型并对其进行训练

3.3 训练模型

4.检查嵌入件

4.1 编写一个计算候选电影评分的函数

4.2 用户推荐和最近的邻居(相似 Item 和 User)

5.矩阵分解中的正则化

 5.1 建立正则化矩阵分解模型并对其进行训练

6.Softmax模型

6.1 损失函数

6.2 为softmax模型编写一个损失函数

6.3 建立一个softmax模型,对其进行训练,并检查其嵌入

6.4 训练Softmax模型

7.参考文献


1.准备工作

关于环境搭建,请前往《机器学习6:使用 TensorFlow 的训练线性回归模型》,本文不再赘述。

1.1 导入依赖模块

from __future__ import print_function

import numpy as np
import pandas as pd
import collections
from mpl_toolkits.mplot3d import Axes3D
from IPython import display
from matplotlib import pyplot as plt
i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jin_Kwok

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值