1单选(1分)
pandas库与numpy库,如下哪个说法是不正确的?
A.pandas库的每个维度都有索引与之关联
B.numpy库更关心数据间关系,pandas库更关心数据与索引间的关系
C.pandas库不能表示n维(n>2)数据
D.pandas库是基于numpy库开发实现的
答案:C
2单选(1分)
pandas库中的Series对象最不可能从如下哪个类型创建?
A.numpy的ndarray类型
B.Python的列表类型
C.Python的字典类型
D.Python的用户自定义对象类型
答案:D
3单选(1分)
如下代码:
import pandas as pd
a = pd.Series([9, 8, 7, 6], [‘a’, ‘b’, ‘c’, ‘d’])
其中,’a’是什么?
A.数据对应的索引
B.标签
C.第一维数据
D.第二维数据
答案:A
4单选(1分)
如下代码:
import pandas as pd
a = pd.Series([1, 2, 3] ,[‘c’, ‘d’, ‘e’])
b = pd.Series([9, 8, 7, 6], [‘a’, ‘b’, ‘c’, ‘d’])
由于a和b中数据个数不同,哪个关于a+b的说法是正确的?
A.不考虑索引,缺少的元素补NaN
B.根据索引运算,缺项补0
C.不考虑索引,直接按照左对齐方式运算
D.根据索引运算,缺项补NaN
答案:D
5单选(1分)
关于pandas库的Series对象,哪个说法是正确的?
A.Series本质上是二维数组
B.Series是一维带索引的数组,索引可由用户自定义
C.Series是一维数组,与ndarray一样
D.Series可以表示多维数据,可以构造多维索引
答案:B
6单选(1分)
关于pandas库的DataFrame对象,哪个说法是正确的?
A.DataFrame是二维带索引的数组,索引可自定义
B.DataFrame与二维ndarray类型在数据运算上方法一致
C.DataFrame只能表示二维数据
D.DataFrame由2个Series组成
答案:A
7单选(1分)
如下哪个方法可以重排Series和DataFrame类型的索引?
A..index()
B..reindex()
C..diff()
D..intersection()
答案:B
8单选(1分)
a是一个DataFrame对象,c是一个Series对象,请问,a > c 的结果是什么维度?
A.3行4列
B.4行4列
C.3行1列
D.4行1列
答案:A
9单选(1分)
a是一个Series对象,共4个元素,请问,a>0的结果是什么?
A.一个值,0或NaN
B.一个Series对象,每个值0或者原值
C.一个Series对象,每个值是True或False
D.一个布尔值,True或False
答案:C
10单选(1分)
如果Series或DataFrame对象中包含NaN,程序排序时该怎么处理?
A.NaN不参与排序,统一放在末尾
B.NaN对应元素位置不变
C.NaN当作最小值参与排序
D.NaN当作最大值参与排序
答案:A
11填空(2分)
如下代码:
import pandas as pd
a = pd.Series([9, 8, 7, 6], [‘a’, ‘b’, ‘c’, ‘d’])
其中,a.index的dtype是______。
答案:object
12填空(2分)
如下代码:
import pandas as pd
a = pd.Series([9, 8, 7, 6], [‘a’, ‘b’, ‘c’, ‘d’])
其中,a.values的dtype是______。
答案:int64
13填空(2分)
请完善如下代码,使得其生成一个3行5列的DataFrame对象。
import pandas as pd
import numpy as np
d = pd.DataFrame(np.arange(15).____(3, 5))
答案:reshape
14填空(2分)
请完善如下代码,生成一个带有’a’, ‘b’, ‘c’, ‘d’索引的DataFrame对象。
import pandas as pd
dict1 = {‘one’:[1, 2, 3, 4], ‘two’:[9, 8, 7, 6]}
d = pd.DataFrame(dict1 , _ = [‘a’, ‘b’, ‘c’, ‘d’])
答案:index
15填空(2分)
补充下列程序,计算a和b的相关系数。
import pandas as pd
a = pd.Series([1, 2, 3, 4, 5])
b = pd.Series([2, 3, 4, 5, 6])
a._(b)
答案:corr