sklearn距离度量metrics.pairwise_distances

本文详细介绍了sklearn.metrics.pairwise_distances模块中常见的多种距离度量方式,包括haversine、cosine、minkowski、chebyshev、hamming、correlation及squared euclidean距离,并提供了每种距离度量的查询链接,帮助读者深入理解不同场景下适用的距离计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本文的csdn链接:
https://blog.csdn.net/Jinyindao243052/article/details/107549460
本文的知乎链接:
https://zhuanlan.zhihu.com/p/163289703

sklearn.metrics.pairwise_distances

常见的距离度量方式

在这里插入图片描述

haversine distance:

查询链接
在这里插入图片描述

cosine distance:

查询链接
在这里插入图片描述

minkowski distance:

查询链接
在这里插入图片描述

chebyshev distance:

查询链接
在这里插入图片描述

hamming distance:

查询链接
在这里插入图片描述

correlation distance:

查询链接
在这里插入图片描述

seuclidean distance:

查询链接

Return the standardized Euclidean distance between two 1-D arrays.
The standardized Euclidean distance between u and v.

函数用法

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值