《平面几何强化训练题集》第2章10-29题

《平面几何强化训练题集》

题目正在录入中,未完待续

10
在这里插入图片描述
证明:

在这里插入图片描述

( C E F ) (CEF) (CEF) ( B E G ) (BEG) (BEG) 交于 E E E, H ′ H' H.

∠ E H ′ F = π − ∠ E C F = ∠ G B E = π − ∠ G H ′ E \angle EH'F=\pi-\angle ECF=\angle GBE=\pi-\angle GH'E EHF=πECF=GBE=πGHE, 所以 G G G, H ′ H' H, F F F 共线.

F F F G E GE GE 的平行线交直线 B C BC BC J J J.

显然 ∠ G B E ∼ ∠ F C J \angle GBE \sim \angle FCJ GBEFCJ.

∠ G H ′ E = ∠ G E B = ∠ F J C \angle GH'E=\angle GEB=\angle FJC GHE=GEB=FJC, 所以 H ′ H' H, F F F, J J J, B B B 共圆.

下面证明 B B B, D D D, J J J, F F F 共圆.

只需证明 ∠ C D J + ∠ C F J + ∠ B F C = π − ∠ B D C = ∠ B A C \angle CDJ+\angle CFJ+\angle BFC=\pi-\angle BDC=\angle BAC CDJ+CFJ+BFC=πBDC=BAC.

∠ C F J = ∠ B G E \angle CFJ=\angle BGE CFJ=BGE.

∠ B F C = ∠ G B A \angle BFC=\angle GBA BFC=GBA.

等价于 ∠ A G E = ∠ C D J \angle AGE=\angle CDJ AGE=CDJ.

∠ D C J = ∠ D A B = ∠ E A C \angle DCJ=\angle DAB=\angle EAC DCJ=DAB=EAC.

C D / C J = C D / B E ⋅ B E / C J CD/CJ=CD/BE \cdot BE/CJ CD/CJ=CD/BEBE/CJ.

显然 △ B A E ∼ △ D A C \triangle BAE \sim \triangle DAC BAEDAC.

C D / B E = A C / A E CD/BE=AC/AE CD/BE=AC/AE.

B E / C J = B G / C F = A G / A C BE/CJ=BG/CF=AG/AC BE/CJ=BG/CF=AG/AC.

代入得 C D / C J = A G / A E CD/CJ=AG/AE CD/CJ=AG/AE.

△ G A E ∼ △ D C J \triangle GAE \sim \triangle DCJ GAEDCJ.

所以 ∠ A G E = ∠ C D J \angle AGE=\angle CDJ AGE=CDJ 成立.

由此可知点 H H H ( B D F ) (BDF) (BDF) 上, 进而 H ′ H' H 即为点 H H H.

证毕.

11

在这里插入图片描述
证明:

在这里插入图片描述

O B OB OB A E AE AE X X X, O C OC OC A F AF AF Y Y Y.

显然 O B OB OB 垂直平分 A E AE AE, O C OC OC 垂直平分 A F AF AF.

X X X ⨀ O \bigodot O O 的幂(如无特别说明本题中所提到的圆幂均值圆幂的绝对值)为 A X 2 AX^2 AX2, 到圆 ⨀ P \bigodot P P 的幂为 O X ⋅ B X OX \cdot BX OXBX. 由射影定理, A X 2 = O X ⋅ B X AX^2=OX \cdot BX AX2=OXBX. 因此点 X X X ⨀ O \bigodot O O ⨀ P \bigodot P P 根轴(即 M N MN MN)上,

同理, Y Y Y ⨀ O \bigodot O O ⨀ P \bigodot P P 根轴(即 M N MN MN)上

所以 M N MN MN △ A E F \triangle AEF AEF 的中位线, 进而可知直线 M N MN MN 平分线段 A G AG AG.

证毕.

12
在这里插入图片描述

证明:

在这里插入图片描述

M M M 的对径点 N N N.

∠ D B N = ∠ N C E \angle DBN=\angle NCE DBN=NCE, B D = C E BD=CE BD=CE, B N = N C BN=NC BN=NC, △ B D N ≃ △ E C N \triangle BDN \simeq \triangle ECN BDNECN

N D = N E ND=NE ND=NE

D E DE DE 的中点 T T T

N T ⊥ D E NT \bot DE NTDE

∠ N K M = π / 2 \angle NKM=\pi/2 NKM=π/2

K K K, D D D, N N N, T T T 共圆

∠ T K N = ∠ E D N = ( π − ∠ D N E ) / 2 = ( π − ∠ B N C ) / 2 = ∠ N B C = ∠ N K C \angle TKN=\angle EDN=(\pi-\angle DNE)/2=(\pi-\angle BNC)/2=\angle NBC=\angle NKC TKN=EDN=(πDNE)/2=(πBNC)/2=NBC=NKC

K K K, T T T, C C C 共线

证毕.

13

在这里插入图片描述

证明:

(一)

在这里插入图片描述

延长 F E FE FE ( A B C ) (ABC) (ABC) 于点 L L L, 先证明 A T = A L AT=AL AT=AL.

△ A B C \triangle ABC ABC 的外心为 O O O, 垂心为 H ′ H' H.

△ A F E ∼ △ A C B \triangle AFE\sim \triangle ACB AFEACB.

∠ O A B = ∠ H ′ A C \angle OAB=\angle H'AC OAB=HAC.

A H ′ ⊥ B C AH'\bot BC AHBC, 所以 O A ⊥ E F OA\bot EF OAEF.

显然 A T = A L AT=AL AT=AL.

设完全四边形 A F P E AFPE AFPE 的密克点为 H 1 H_1 H1.

∠ F H 1 E = ∠ F H 1 A + ∠ E H 1 A = ∠ F C E + ∠ E B F = ∠ K F E \angle FH_1E=\angle FH_1A+\angle EH_1A = \angle FCE+\angle EBF=\angle KFE FH1E=FH1A+EH1A=FCE+EBF=KFE.

所以 K K K, H 1 H_1 H1, E E E, F F F 共圆.

可类似地通过倒角证明 ∠ B K C = ∠ B H 1 C \angle BKC=\angle BH_1C BKC=BH1C, 进而 K K K, H 1 H_1 H1, C C C, B B B 共圆.

由根心定理, K H 1 KH_1 KH1, B C BC BC, E F EF EF 共点 (记为 T T T).

由圆内接四边形的性质可知 A P AP AP T T T 关于圆 K K K 的极线.

T H 1 ⋅ T K = T B ⋅ T C TH_1 \cdot TK = TB \cdot TC TH1TK=TBTC 等于 T T T 到圆 K K K 的幂, 结合射影定理易知 H 1 H_1 H1 T T T 关于圆 K K K 的极线上, 即 A A A, P P P, H 1 H_1 H1 共线.

显然 A H 1 ⊥ K H 1 AH_1 \bot KH_1 AH1KH1, 进而点 H 1 H_1 H1 即为点 H H H.

显然 ( A K H ) (AKH) (AKH) 的圆心是 A K AK AK 的中点, 所以圆 A A A, 圆 K K K, ( A K H ) (AKH) (AKH) 的圆心共线, 再结合 T T T 到三圆的幂相等可知三个圆共轴于一条过 T T T 的直线 l l l.

在这里插入图片描述

记圆 A A A 与圆 K K K 的一个交点为点 S S S, 另一个为 S ′ S' S, 显然 A S = A S ′ = A T AS=AS'=AT AS=AS=AT, 且 S S ′ SS' SS A K AK AK 垂直平分. 进而可知 △ A S P ∼ △ A H S \triangle ASP \sim \triangle AHS ASPAHS, A S 2 = A P ⋅ A H = A T 2 = A M 2 = A N 2 AS^2=AP \cdot AH=AT^2=AM^2=AN^2 AS2=APAH=AT2=AM2=AN2.

进而可知 △ A P M ∼ △ A M H \triangle APM \sim \triangle AMH APMAMH, P M / M H = A P / A M PM/MH=AP/AM PM/MH=AP/AM, 同理, P N / N H = A P / A N PN/NH=AP/AN PN/NH=AP/AN, A M = A N AM=AN AM=AN, 进而易得出本题结论.

证毕.

(二)

延长 F E FE FE ( A B C ) (ABC) (ABC) 于点 L L L, 同 (一) 证明 A T = A L AT=AL AT=AL. H H H 是完全四边形 A F P E AFPE AFPE 的密克点.

证明 △ A M P ∼ △ A H M \triangle AMP\sim\triangle AHM AMPAHM, △ A N P ∼ △ A H P \triangle ANP\sim\triangle AHP ANPAHP :

由引理, A T = A L AT=AL AT=AL.

△ A T F ∼ △ A B T \triangle ATF \sim \triangle ABT ATFABT, 所以 A F ⋅ A B = A T 2 = A M 2 = A N 2 AF\cdot AB=AT^2=AM^2=AN^2 AFAB=AT2=AM2=AN2.

P P P, H H H, B B B, F F F 共圆可知 A F ⋅ A B = A P ⋅ A H AF \cdot AB = AP \cdot AH AFAB=APAH.

A P ⋅ A H = A M 2 AP\cdot AH=AM^2 APAH=AM2, △ A M P ∼ △ A H M \triangle AMP \sim \triangle AHM AMPAHM, 同理 △ A N P ∼ △ A H P \triangle ANP \sim \triangle AHP ANPAHP.

进而易得出本题结论.

14
在这里插入图片描述
证明:

在这里插入图片描述

∠ P A E = ∠ P F E = ∠ A B C \angle PAE=\angle PFE=\angle ABC PAE=PFE=ABC, ∠ A P F = ∠ P E F = ∠ A C B \angle APF=\angle PEF=\angle ACB APF=PEF=ACB

所以 △ P E F ∼ △ P B C \triangle PEF \sim \triangle PBC PEFPBC

∠ B A D = ∠ D P F \angle BAD = \angle DPF BAD=DPF, ∠ C A D = ∠ E P D \angle CAD=\angle EPD CAD=EPD

所以 F K / E K = B D / C D FK/EK=BD/CD FK/EK=BD/CD.

15

在这里插入图片描述
证明:
在这里插入图片描述

( C E B ) (CEB) (CEB), 交 ( A D E ) (ADE) (ADE) E E E, G G G.

由根心定理, G E GE GE, A F AF AF, B C BC BC 三线共点, 进而 G G G, E E E, P P P 共线.

∠ G A C = ∠ G D B \angle GAC=\angle GDB GAC=GDB.

∠ G B D = ∠ G C A \angle GBD=\angle GCA GBD=GCA.

结合 B D = A C BD=AC BD=AC.

△ G A C ≃ △ G D B \triangle GAC \simeq \triangle GDB GACGDB.

G A = G D GA=GD GA=GD, G B = G C GB=GC GB=GC.

∠ B G C = ∠ A G D \angle BGC=\angle AGD BGC=AGD.

△ G A D ∼ △ G B C \triangle GAD \sim \triangle GBC GADGBC.

∠ P E C = ∠ G B C = ∠ G A D = ∠ D E F \angle PEC=\angle GBC=\angle GAD=\angle DEF PEC=GBC=GAD=DEF.

证毕.

16

在这里插入图片描述

证明:

在这里插入图片描述

∠ C F E = a \angle CFE=a CFE=a, 则 ∠ G B A = π / 2 − a \angle GBA=\pi/2-a GBA=π/2a, ∠ F D A = π / 2 + a \angle FDA=\pi/2+a FDA=π/2+a, 所以 B B B, K K K, D D D, A A A 共圆.

∠ K L A = ∠ K B A = π / 2 − a \angle KLA=\angle KBA=\pi/2-a KLA=KBA=π/2a, ∠ K A L = ∠ K D A − π / 2 = a \angle KAL=\angle KDA-\pi/2=a KAL=KDAπ/2=a, 只需证明 ∠ P K L = a \angle PKL=a PKL=a.

若可证明 K K K, F F F, P P P, A A A 四点共圆, 则 ∠ K P A = ∠ K F A = π / 2 − 2 a \angle KPA=\angle KFA=\pi/2-2a KPA=KFA=π/22a, ∠ P K L = ∠ K L A − ∠ K P A = a \angle PKL=\angle KLA-\angle KPA=a PKL=KLAKPA=a.

证明 K K K, F F F, P P P, A A A 四点共圆: ∠ P F K = π − a \angle PFK=\pi-a PFK=πa, 所以 ∠ P F K + ∠ K A L = π \angle PFK+\angle KAL=\pi PFK+KAL=π. K K K, F F F, P P P, A A A 四点共圆.

证毕.

17
在这里插入图片描述

证明:
在这里插入图片描述
A A A, D D D, B B B, C C C 关于 P P P 的对称点 A ′ A' A, D ′ D' D, B ′ B' B, C ′ C' C.

显然, A ′ A' A, D ′ D' D, B ′ B' B, C ′ C' C 共于一个和 ⨀ O \bigodot O O 相等的圆上; O ′ O' O, P P P, O O O 共线, 且 O P = O ′ P OP=O'P OP=OP.

显然 A ′ A' A, D ′ D' D, B B B, C C C 共圆.

A ′ D ′ A'D' AD B C BC BC 交于 F ′ F' F.

F ′ A ′ ⋅ F ′ D ′ = F ′ B ⋅ F ′ C F'A'\cdot F'D'=F'B \cdot F'C FAFD=FBFC, F ′ F' F ⨀ O \bigodot O O ⨀ O ′ \bigodot O' O 的根轴上.

F ′ O = F ′ O ′ F'O=F'O' FO=FO, 结合 O P = O ′ P OP=O'P OP=OP 可知 F ′ O F'O FO 垂直于 O O ′ OO' OO, 进而可知 F ′ F' F 即为 F F F.

P E / / A ′ F / / A D PE//A'F//AD PE//AF//AD.

证毕.

18

在这里插入图片描述

证明:

在这里插入图片描述

∠ A P D = ∠ F M A \angle APD=\angle FMA APD=FMA, ∠ A P E = π − ∠ A N F = ∠ F M A \angle APE=\pi-\angle ANF=\angle FMA APE=πANF=FMA

P P P, D D D, E E E 共线.

( A D M ) (ADM) (ADM) 的半径与 ( A E N ) (AEN) (AEN) 的半径之比为 A D / sin ⁡ ∠ A P D A E / sin ⁡ ∠ A P E = 1 \frac{AD/\sin \angle APD}{AE / \sin \angle APE}=1 AE/sinAPEAD/sinAPD=1.

所以 ∠ P M A = ∠ P N A \angle PMA=\angle PNA PMA=PNA.

∠ M P A = ∠ M D A = ∠ B D F \angle MPA=\angle MDA=\angle BDF MPA=MDA=BDF.

∠ A P N = ∠ A E N = ∠ C E F \angle APN=\angle AEN=\angle CEF APN=AEN=CEF.

A D AD AD, A E AE AE ⨀ K \bigodot K K 相切可知 ∠ M P A + ∠ A P N = π − ∠ D F E = ∠ M A N \angle MPA+\angle APN=\pi-\angle DFE=\angle MAN MPA+APN=πDFE=MAN.

进而易知 A M P N AMPN AMPN 为平行四边形.

证毕.

19

在这里插入图片描述

证明:
在这里插入图片描述

∠ P O A = 2 B − x \angle POA=2B-x POA=2Bx

∠ O F P = ∠ O A P = p i / 2 − 2 B + x \angle OFP=\angle OAP=pi/2-2B+x OFP=OAP=pi/22B+x

∠ O F E = ∠ O A C = π / 2 − B \angle OFE=\angle OAC=\pi/2-B OFE=OAC=π/2B

∠ P F E = ∠ O F E − ∠ O F P = B − x = ∠ K B A \angle PFE=\angle OFE-\angle OFP=B-x=\angle KBA PFE=OFEOFP=Bx=KBA

20

在这里插入图片描述

证明:

在这里插入图片描述

∠ A F G = ∠ D A B + ∠ A D E \angle AFG=\angle DAB+\angle ADE AFG=DAB+ADE.

∠ A P D = ∠ A D P = ∠ D A B + ∠ D B A \angle APD=\angle ADP=\angle DAB+\angle DBA APD=ADP=DAB+DBA.

A D = A E AD=AE AD=AE, 所以 ∠ D B A = ∠ A D E \angle DBA=\angle ADE DBA=ADE.

进而 ∠ A F G = ∠ A P D \angle AFG=\angle APD AFG=APD, P P P, A A A, F F F, D D D 四点共圆.

可以类似地证明: K K K, A A A, G G G, E E E 四点共圆. (过程略)

∠ F P A = ∠ A D E = ∠ A E D = ∠ G K A \angle FPA=\angle ADE=\angle AED=\angle GKA FPA=ADE=AED=GKA.

A P = A K ⇒ ∠ A P K = ∠ A K P AP=AK \Rightarrow \angle APK=\angle AKP AP=AKAPK=AKP.

进而 ∠ F P K = ∠ G K P \angle FPK=\angle GKP FPK=GKP, P H = P K PH=PK PH=PK.

结合 A P = A K AP=AK AP=AK 可知 A H AH AH 垂直平分 P K PK PK.

证毕.

21
在这里插入图片描述
证明:
在这里插入图片描述
∠ I P B = ∠ I Q B = ∠ I B Q \angle IPB = \angle IQB=\angle IBQ IPB=IQB=IBQ, 进而有 △ I B R ∼ △ I P B \triangle IBR \sim \triangle IPB IBRIPB.

I B 2 = I P ⋅ I R = I D 2 IB^2=IP \cdot IR=ID^2 IB2=IPIR=ID2.

进而有 △ I D P ∼ △ I R D \triangle IDP \sim \triangle IRD IDPIRD.

∠ R B E + ∠ I D R = ∠ B R D \angle RBE+\angle IDR=\angle BRD RBE+IDR=BRD.

∠ I D E = π 2 − ∠ I D B = π − ∠ B R D \angle IDE=\frac{\pi}{2}-\angle IDB=\pi-\angle BRD IDE=2πIDB=πBRD.

所以 ∠ R B E + ∠ I D R + ∠ I D E = π \angle RBE+\angle IDR+\angle IDE=\pi RBE+IDR+IDE=π, E E E, B B B, R R R, D D D 四点共圆.

∠ B R E = ∠ B D E = π 2 \angle BRE=\angle BDE=\frac{\pi}{2} BRE=BDE=2π.

证毕.

22
在这里插入图片描述

证明:

在这里插入图片描述

∠ K B Q = ∠ K Q B = ∠ K P B \angle KBQ=\angle KQB=\angle KPB KBQ=KQB=KPB, 由此可知 △ K B P ∼ △ K R B \triangle KBP \sim \triangle KRB KBPKRB.

∴ K C 2 = K B 2 = K R ⋅ K P \therefore KC^2=KB^2=KR\cdot KP KC2=KB2=KRKP.

∴ △ K C R ∼ △ K R C \therefore \triangle KCR \sim \triangle KRC KCRKRC.

A K ⊥ B C AK \bot BC AKBC, 所以 E C ⊥ B C EC \bot BC ECBC.

∠ B R C = ∠ B R K + ∠ C R K = ∠ P B K + ∠ P C K = ∠ P B A + ∠ P C B − 2 ∠ K A B = π − ∠ B A C / 2 − 2 ∠ K B A \angle BRC=\angle BRK+\angle CRK=\angle PBK+\angle PCK=\angle PBA+\angle PCB-2\angle KAB=\pi-\angle BAC/2-2\angle KBA BRC=BRK+CRK=PBK+PCK=PBA+PCB2∠KAB=πBAC/22∠KBA.

在这里插入图片描述

( E B C ) (EBC) (EBC) 的圆心为 O O O, 易知 O O O A K AK AK 上.

( E B C ) (EBC) (EBC) ⨀ A \bigodot A A 的内位似中心 K ′ K' K.

D A / O E = A K ′ / O K ′ DA/OE=AK'/OK' DA/OE=AK/OK, 所以 △ D A K ′ ∼ △ E O K ′ \triangle DAK'\sim \triangle EOK' DAKEOK, ∠ D K ′ A = ∠ O K ′ E \angle DK'A=\angle OK'E DKA=OKE, 进而可知 D D D, K ′ K' K, E E E 共线, K ′ K' K 即为 K K K.

在这里插入图片描述

B A / B O = A K ′ / O K ′ BA/BO=AK'/OK' BA/BO=AK/OK, 所以 ∠ K ′ B A = ∠ K ′ B O \angle K'BA=\angle K'BO KBA=KBO.

∠ B E C = ∠ A O E = ∠ B A C / 2 + 2 ∠ K B A \angle BEC=\angle AOE=\angle BAC/2+2\angle KBA BEC=AOE=BAC/2+2∠KBA.

∴ ∠ B E C + ∠ B R C = π \therefore \angle BEC+\angle BRC=\pi BEC+BRC=π, 进而 E E E, C C C, R R R, B B B 共圆.

∴ ∠ E R B = ∠ E R C = π 2 \therefore \angle ERB=\angle ERC=\frac{\pi}{2} ERB=ERC=2π.

证毕.

23

在这里插入图片描述

证明:

在这里插入图片描述

( A E F ) (AEF) (AEF) ( A B C ) (ABC) (ABC) A A A 外的另一个交点为 T T T.

△ T E B ∼ △ T F C \triangle TEB \sim \triangle TFC TEBTFC. (证明略)

T C / T B = C F / B E TC/TB=CF/BE TC/TB=CF/BE.

( A F B ) (AFB) (AFB) 交线段 B D BD BD X X X, ( A E C ) (AEC) (AEC) 交线段 B C BC BC Y Y Y.

D X = D P ⋅ D A / D B = D P ⋅ D A / D C = D Y DX=DP \cdot DA/DB=DP \cdot DA/DC=DY DX=DPDA/DB=DPDA/DC=DY.

B E ⋅ B A = B Y ⋅ B C = C X ⋅ B C = C F ⋅ C A ⇒ B E / C F = C A / B A BE \cdot BA=BY\cdot BC=CX \cdot BC=CF \cdot CA \Rightarrow BE/CF=CA/BA BEBA=BYBC=CXBC=CFCABE/CF=CA/BA.

T C / T B = B A / C A TC/TB=BA/CA TC/TB=BA/CA, 所以四边形 T A B C TABC TABC 构成等腰梯形 ⇒ O \Rightarrow O O T A TA TA 的中垂线上 ⇒ O \Rightarrow O O B C BC BC 的中垂线上.

证毕.

24

在这里插入图片描述

证明:

在这里插入图片描述

记内切圆 I I I A B AB AB, A C AC AC 上的切点分别为 J J J, L L L. 设若能证明 ∠ A L T = ∠ C L S \angle ALT=\angle CLS ALT=CLS, 则 ∠ A L T = ∠ C L S = ∠ L T S \angle ALT=\angle CLS=\angle LTS ALT=CLS=LTS, T S / / A C TS//AC TS//AC. 下面证明 ∠ A L T = ∠ C L S \angle ALT=\angle CLS ALT=CLS.

∠ A L T = ∠ C L S    ⟺    ∠ L S T = ∠ L T S    ⟺    L T = L S    ⟺    ∠ T I L = ∠ S I L \angle ALT=\angle CLS \iff \angle LST=\angle LTS \iff LT=LS \iff \angle TIL=\angle SIL ALT=CLSLST=LTSLT=LSTIL=SIL.

∠ T I L = ∠ J I L − 2 ∠ F I J = ( π − A ) − 2 ( π / 2 − A − C / 2 ) = A + C \angle TIL=\angle JIL - 2\angle FIJ=(\pi-A)-2(\pi/2-A-C/2)=A+C TIL=JIL2∠FIJ=(πA)2(π/2AC/2)=A+C.

∠ S I L = 2 ∠ L P S \angle SIL=2\angle LPS SIL=2∠LPS.

∠ L P S = π / 2 − C / 2 − ∠ S P C = π / 2 − C / 2 − ∠ S K P \angle LPS=\pi/2-C/2-\angle SPC=\pi/2-C/2-\angle SKP LPS=π/2C/2SPC=π/2C/2SKP.

因为 A I / / K S AI//KS AI//KS, 所以 ∠ S K P = ∠ A I K = π − ∠ B I P − ∠ A I B = π / 2 + B / 2 − ( π / 2 + C / 2 ) = B / 2 − C / 2 \angle SKP=\angle AIK=\pi- \angle BIP -\angle AIB=\pi/2 + B/2-(\pi/2+C/2)=B/2-C/2 SKP=AIK=πBIPAIB=π/2+B/2(π/2+C/2)=B/2C/2.

所以 ∠ L P S = π / 2 − B / 2 \angle LPS=\pi/2-B/2 LPS=π/2B/2, 进而 ∠ S I L = π − B = A + C = ∠ T I L \angle SIL=\pi-B=A+C=\angle TIL SIL=πB=A+C=TIL.

证毕.

25

在这里插入图片描述

证明:

在这里插入图片描述
D N DN DN B C BC BC 于点 G G G, 设 D M DM DM ( A B C ) (ABC) (ABC) 于点 H H H.

显然 D H DH DH 为直径.

∠ H N G = ∠ G M H = π 2 \angle HNG= \angle GMH = \frac{\pi}{2} HNG=GMH=2π, 所以 N N N, H H H, M M M, G G G 四点共圆.

倒角易知 ∠ G F C = ∠ G H C \angle GFC=\angle GHC GFC=GHC (过程略). 进而有 G G G, F F F, H H H, C C C 四点共圆.

∠ A E F = ∠ B N D − ∠ A B N \angle AEF=\angle BND-\angle ABN AEF=BNDABN.

∠ N G B = ∠ N H M = ∠ F H C \angle NGB=\angle NHM=\angle FHC NGB=NHM=FHC, 所以 ∠ N H F = ∠ D H C \angle NHF=\angle DHC NHF=DHC.

∠ A H F = ∠ N H F − ∠ N H A = ∠ D H C − ∠ A B N = ∠ B N D − ∠ A B N = ∠ A E F \angle AHF=\angle NHF-\angle NHA=\angle DHC-\angle ABN=\angle BND-\angle ABN=\angle AEF AHF=NHFNHA=DHCABN=BNDABN=AEF.

∴ A \therefore A A, E E E, H H H, F F F 共圆.

∠ E H F = ∠ B A C = 2 ∠ D H C = 2 ∠ N H F \angle EHF=\angle BAC =2\angle DHC=2\angle NHF EHF=BAC=2∠DHC=2∠NHF.

∴ ∠ N H F = ∠ N H E \therefore \angle NHF=\angle NHE NHF=NHE.

∠ H A C = π 2 − ∠ D A C = 1 2 ( π − ∠ B A C ) \angle HAC=\frac{\pi}{2}-\angle DAC=\frac{1}{2}(\pi-\angle BAC) HAC=2πDAC=21(πBAC).

∴ ∠ E A H = ∠ H A C \therefore \angle EAH=\angle HAC EAH=HAC, E H = F H EH=FH EH=FH.

进而可知 △ E H N ≃ △ F H N \triangle EHN \simeq \triangle FHN EHNFHN, E N = F N EN=FN EN=FN.

证毕.

26

在这里插入图片描述
证明:

在这里插入图片描述

延长 B C BC BC ( A B D ) (ABD) (ABD) H H H.

∠ E A B = ∠ B C E = ∠ B H F ⇒ H F / / C E \angle EAB=\angle BCE=\angle BHF \Rightarrow HF//CE EAB=BCE=BHFHF//CE. 结合 F G / / C E FG//CE FG//CE 可知 F F F, G G G, H H H 共线.

设过 G G G B C BC BC 的平行线交 B K BK BK 于点 S S S.

C G / K G = E F / K F = B S / K S ⇒ B E / / F S CG/KG=EF/KF=BS/KS \Rightarrow BE//FS CG/KG=EF/KF=BS/KSBE//FS

进而 ∠ G S F = ∠ C B E = ∠ D A F = ∠ D B F \angle GSF= \angle CBE=\angle DAF= \angle DBF GSF=CBE=DAF=DBF, B B B, G G G, F F F, S S S 四点共圆.

∠ F B S = ∠ S G F = ∠ B H F \angle FBS=\angle SGF=\angle BHF FBS=SGF=BHF, 所以 B S BS BS ⨀ O \bigodot O O B B B 点处的切线.

证毕.

27
请添加图片描述
证明:

在这里插入图片描述

K P = N P ⇒ ∠ K D P = ∠ N D P KP=NP \Rightarrow \angle KDP=\angle NDP KP=NPKDP=NDP.

∠ K N D = ∠ K P D = 2 ∠ K N M ⇒ ∠ K N M = ∠ D N M \angle KND=\angle KPD=2\angle KNM \Rightarrow \angle KNM=\angle DNM KND=KPD=2∠KNMKNM=DNM.

∴ M \therefore M M △ D N K \triangle DNK DNK 的内心.

∠ D K M = ∠ N K M = ∠ N A M \angle DKM=\angle NKM=\angle NAM DKM=NKM=NAM.

∴ K M \therefore KM KM A N AN AN 的交点在 ( A B C ) (ABC) (ABC) 上.

∠ O A D = ∠ K A D − π 2 = ∠ D K M \angle OAD=\angle KAD-\frac{\pi}{2}=\angle DKM OAD=KAD2π=DKM.

∴ A \therefore A A, N N N, O O O 共线, 即 O O O ( K M D ) (KMD) (KMD) 上.

28

在这里插入图片描述

在这里插入图片描述

证明:

在这里插入图片描述

∠ K B Q = ∠ K Q B = ∠ K P B \angle KBQ=\angle KQB=\angle KPB KBQ=KQB=KPB, 由此可知 △ K B P ∼ △ K R B \triangle KBP \sim \triangle KRB KBPKRB.

∴ K C 2 = K B 2 = K R ⋅ K P \therefore KC^2=KB^2=KR\cdot KP KC2=KB2=KRKP.

∴ △ K C R ∼ △ K R C \therefore \triangle KCR \sim \triangle KRC KCRKRC.

A K ⊥ B C AK \bot BC AKBC, 所以 E C ⊥ B C EC \bot BC ECBC.

∠ B R C = ∠ B R K + ∠ C R K = ∠ P B K + ∠ P C K = ∠ P B A + ∠ P C B − 2 ∠ K A B = π − ∠ B A C / 2 − 2 ∠ K B A \angle BRC=\angle BRK+\angle CRK=\angle PBK+\angle PCK=\angle PBA+\angle PCB-2\angle KAB=\pi-\angle BAC/2-2\angle KBA BRC=BRK+CRK=PBK+PCK=PBA+PCB2∠KAB=πBAC/22∠KBA.

( E B C ) (EBC) (EBC) 的圆心为 O O O, 易知 O O O A K AK AK 上.

( E B C ) (EBC) (EBC) ⨀ A \bigodot A A 的内位似中心 K ′ K' K.

D A / O E = A K ′ / O K ′ DA/OE=AK'/OK' DA/OE=AK/OK, 所以 △ D A K ′ ∼ △ E O K ′ \triangle DAK'\sim \triangle EOK' DAKEOK, ∠ D K ′ A = ∠ O K ′ E \angle DK'A=\angle OK'E DKA=OKE, 进而可知 D D D, K ′ K' K, E E E 共线, K ′ K' K 即为 K K K.

B A / B O = A K ′ / O K ′ BA/BO=AK'/OK' BA/BO=AK/OK, 所以 ∠ K ′ B A = ∠ K ′ B O \angle K'BA=\angle K'BO KBA=KBO.

∠ B E C = ∠ A O E = ∠ B A C / 2 + 2 ∠ K B A \angle BEC=\angle AOE=\angle BAC/2+2\angle KBA BEC=AOE=BAC/2+2∠KBA.

∴ ∠ B E C + ∠ B R C = π \therefore \angle BEC+\angle BRC=\pi BEC+BRC=π, 进而 E E E, C C C, R R R, B B B 共圆.

∴ ∠ E R B = ∠ E R C = π 2 \therefore \angle ERB=\angle ERC=\frac{\pi}{2} ERB=ERC=2π.

证毕.

29 已知 △ A B C \triangle ABC ABC, ∠ B A C \angle BAC BAC 的平分线交 △ A B C \triangle ABC ABC 的外接圆于点 D D D, 作 E F / / B C EF//BC EF//BC D B DB DB, D C DC DC 分别于点 E E E, F F F, ( B D F ) (BDF) (BDF) A B AB AB 于点 B B B, M M M, ( C D E ) (CDE) (CDE) A C AC AC 于点 C C C, N N N. 求证: A M = A N AM=AN AM=AN.

在这里插入图片描述

证明:

在这里插入图片描述

( D E F ) (DEF) (DEF) A D AD AD 于点 K K K, 则 ∠ E K D = ∠ D F E = ∠ D C B = A / 2 \angle EKD=\angle DFE=\angle DCB=A/2 EKD=DFE=DCB=A/2, ∠ F K D = ∠ D E F = ∠ D B C = A / 2 \angle FKD=\angle DEF=\angle DBC=A/2 FKD=DEF=DBC=A/2. 进而 ∠ E K D = ∠ B A D \angle EKD=\angle BAD EKD=BAD, E K / / A B EK//AB EK//AB, ∠ D K F = ∠ D A C \angle DKF =\angle DAC DKF=DAC, F K / / A C FK//AC FK//AC.

延长 E K EK EK, F K FK FK, 分别交 A B AB AB, A C AC AC M ′ M' M, N ′ N' N.

易知 ∠ A B D + ∠ M ′ F D = ∠ A B D + ∠ A C D = π \angle ABD+\angle M'FD=\angle ABD+\angle ACD=\pi ABD+MFD=ABD+ACD=π, M ′ M' M ( B D F ) (BDF) (BDF) 上, M ′ M' M 即为 M M M.

类似地, 可证明 N ′ N' N 即为 N N N.

显然四边形 A M K N AMKN AMKN 是菱形, 因此 A M = A N AM=AN AM=AN.

证毕.

整理时间: 2025年2月22日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值