2014年IMO几何预选题第4题

Γ \Gamma Γ 是定圆, A A A, B B B, C C C Γ \Gamma Γ 上的三个定点, 变量 λ ∈ ( 0 , 1 ) \lambda \in (0,1) λ(0,1), P P P 是不同于 A A A, B B B, C C C 的动点, M M M C P CP CP 上的动点, 满足 C P = λ C P CP=\lambda CP CP=λCP, M M M, Q Q Q ( A M P ) (AMP) (AMP) ( B M C ) (BMC) (BMC) 的交点. 求证: Q Q Q 在定圆上.
在这里插入图片描述

证明:

在这里插入图片描述

由根心定理, A P AP AP, B C BC BC, Q M QM QM 共点(记为 R R R), 显然, R R R 是定点.

∠ A Q R = π − ∠ A P C = ∠ A B R \angle AQR=\pi-\angle APC=\angle ABR AQR=πAPC=ABR.

∴ A \therefore A A, Q Q Q, B B B, R R R 共圆.

由于 A A A, B B B, R R R 都是定点, 所以是 ( A Q B R ) (AQBR) (AQBR) 是定圆.

证毕.

整理时间: 2025年1月1日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值