Γ
\Gamma
Γ 是定圆,
A
A
A,
B
B
B,
C
C
C 是
Γ
\Gamma
Γ 上的三个定点, 变量
λ
∈
(
0
,
1
)
\lambda \in (0,1)
λ∈(0,1),
P
P
P 是不同于
A
A
A,
B
B
B,
C
C
C 的动点,
M
M
M 是
C
P
CP
CP 上的动点, 满足
C
P
=
λ
C
P
CP=\lambda CP
CP=λCP,
M
M
M,
Q
Q
Q 为
(
A
M
P
)
(AMP)
(AMP) 和
(
B
M
C
)
(BMC)
(BMC) 的交点. 求证:
Q
Q
Q 在定圆上.
证明:
由根心定理, A P AP AP, B C BC BC, Q M QM QM 共点(记为 R R R), 显然, R R R 是定点.
∠ A Q R = π − ∠ A P C = ∠ A B R \angle AQR=\pi-\angle APC=\angle ABR ∠AQR=π−∠APC=∠ABR.
∴ A \therefore A ∴A, Q Q Q, B B B, R R R 共圆.
由于 A A A, B B B, R R R 都是定点, 所以是 ( A Q B R ) (AQBR) (AQBR) 是定圆.
证毕.
整理时间: 2025年1月1日