排列组合公式
A
5
2
=
5
∗
4
A^2_5= 5*4
A52=5∗4
A n n = n ! A^n_n=n! Ann=n!
C 5 2 = 5 ∗ 4 1 ∗ 2 C^2_5= \frac{5*4}{1*2} C52=1∗25∗4
如果 a + b = n ,那么 C n a = C n b 如果a+b=n,那么C^a_n = C^b_n 如果a+b=n,那么Cna=Cnb
C n n = C n 0 = 1 C^n_n = C^0_n=1 Cnn=Cn0=1
闰年
四年一润,百年不润;四百年再润。
(n%100!=0&&n%4==0)||(n%400==0)
加法原理和乘法原理
加法原理:如果完成一件事情有M种方式,每种方式下有不同方法,那就把这些所有方法加起来。
乘法原理:如果完成一件事,需要分步骤,而每一步都分别有x,y,n,m种可能,那我们完成这件事就一共有x* y* n* m种可能。
linux常用命令
命令 | |
---|---|
cd | 切换当前工作目录 |
ls | 显示指定工作目录下之内容 |
mkdir | 创建 |
rm | 删除 |
mv | 移动文件、目录或更名 |
cp | 复制文件 |
find | 查找功能 |
chmod | 改变文件的权限 |
阿克曼函数
定义:
long long ack(long long m, long long n) {
if (m == 0) return n + 1;
if (n == 0) return ack(m - 1, 1);
return ack(m - 1, ack(m, n - 1));
}
规律:
同余
定义:两个整数a、b,若它们除以整数m所得的余数相等,a同余于b模m
记作:a≡b (mod m) <=> a mod p = b mod p
同余式
- (a+b)%p=(a%p + b%p)%p
- (a-b)%p=(a%p - b%p)%p
- (a*b)%p=(a%p * b%p)%p
- (a/b)%p=(a%p * (1/b)%p)%p
费马小定理
如果p是一个质数,且a,p互质,则有a^(p-1)≡ 1(mod p)