pytorch中维度dim的理解

PyTorch 中对 tensor 的很多操作如 sum、softmax 等都可以设置 dim 参数用来指定操作在哪一维进行。PyTorch 中的 dim 类似于 numpy 中的 axis,这篇文章来总结一下 PyTorch 中的 dim 操作。首先看一下这个图,图中给出了维度标号,注意区分正负,从左往右数,括号代表的维度分别是 0 和 1 和 2,从右往做为 -3 和 -2 和 -1。待会儿会用到。

图1

括号之间是嵌套关系,代表了不同的维度。从左往右数,两个括号代表的维度分别是 0 和 1 ,在第 0 维遍历得到向量,在第 1 维遍历得到标量.

a = torch.tensor([[1,2],
                  [3,4]])

则 3 个括号代表的维度从左往右分别为 0, 1, 2,在第 0 维遍历得到矩阵,在第 1 维遍历得到向量,在第 2 维遍历得到标量。

b = torch.tensor([[[3, 2], [1, 4]],
                  [[5, 6], [7, 8]]])#张量

在某一维度求和(或者进行其他操作)就是对该维度中的元素进行求和。对于矩阵 a

a = torch.tensor([[1,2],
                  [3,4]])

求 a 在第 0 维的和,因为第 0 维代表最外边的括号&#x

PyTorch中,维度用`dim`表示,可以用来指定在哪个维度上进行操作。下面是一些常见的PyTorch维度操作: 1. `torch.unsqueeze(input, dim)`:在指定维度上增加一个维度,返回一个新的张量。例如: ```python import torch x = torch.tensor([1, 2, 3]) # 一维张量 x = torch.unsqueeze(x, 0) # 在第0维增加一个维度 print(x) # 输出:tensor([[1, 2, 3]]) ``` 2. `torch.squeeze(input, dim)`:在指定维度上去掉一个维度,返回一个新的张量。例如: ```python import torch x = torch.tensor([[1, 2, 3]]) # 二维张量 x = torch.squeeze(x, 0) # 去掉第0维 print(x) # 输出:tensor([1, 2, 3]) ``` 3. `torch.transpose(input, dim0, dim1)`:交换两个维度的位置,返回一个新的张量。例如: ```python import torch x = torch.tensor([[1, 2, 3], [4, 5, 6]]) # 二维张量 x = torch.transpose(x, 0, 1) # 交换第0维和第1维 print(x) # 输出:tensor([[1, 4], # [2, 5], # [3, 6]]) ``` 4. `torch.cat(inputs, dim)`:在指定维度上将多个张量拼接起来,返回一个新的张量。例如: ```python import torch x1 = torch.tensor([[1, 2, 3]]) x2 = torch.tensor([[4, 5, 6]]) x = torch.cat((x1, x2), dim=0) # 在第0维上拼接 print(x) # 输出:tensor([[1, 2, 3], # [4, 5, 6]]) ``` 5. `torch.stack(inputs, dim)`:在指定维度上将多个张量堆叠起来,返回一个新的张量。例如: ```python import torch x1 = torch.tensor([1, 2, 3]) x2 = torch.tensor([4, 5, 6]) x = torch.stack((x1, x2), dim=0) # 在第0维上堆叠 print(x) # 输出:tensor([[1, 2, 3], # [4, 5, 6]]) ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值