Pytorch笔记:维度dim的定义及其理解使用

本文详细介绍了PyTorch中张量的维度dim的概念,通过实例解析了张量的大小判断及dim的使用。dim的值用于指定在特定维度上进行操作,例如torch.argmax()和sum()。作者强调理解dim为控制变量法的应用,有助于更好地理解各种操作。此外,作者分享了其在CV算法工程师求职过程中的经历,并邀请读者关注其小红书账号获取更多学习资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、dim的定义

TensorFlow对张量的阶、维度、形状有着明确的定义,而在pytorh中对其的定义却模糊不清,仅仅有一个torch.size()的函数来查看张量的大小(我理解的这个大小指的就是TensorFlow对张量的形状描述,也和numpy的.shape类似)。所以,首先要搞清楚如何看一个张量的形状。

import torch
z = torch.ones(2,3,4)
print(z)
print(z.size())
print(z.size(0))
print(z.size(1))
print(z.size(2))

以上代码的控制台输出为:

tensor([[[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]],

        [[1., 1., 1., 1.],
         [1., 1
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值