直接贴代码
面向过程
import matplotlib.pyplot as plt
import random
from pylab import mpl
import pylab as pl
# 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = False
# 画出温度变化图
# 0.准备x, y坐标的数据
x = range(60)
y_shanghai = [random.uniform(15, 18) for i in x]
y_beijing = [random.uniform(1, 3) for j in x]
# 1.创建画布
plt.figure(figsize=(20, 8), dpi=80)
# 2.绘制图像
plt.plot(x, y_shanghai, label="上海")
plt.plot(x, y_beijing, color="r", linestyle="--", label="北京")
# # 2.5 添加图例
plt.legend(loc=0)
# 构造x轴刻度
x_ticks_label = ["11点{}分".format(i) for i in x]
# 构造y轴刻度
y_ticks = range(40)
# 修改x,y轴坐标的刻度显示
plt.xticks(x[::5], x_ticks_label[::5])
plt.yticks(y_ticks[::5])
# 增加网格
plt.grid(True, linestyle='--', alpha=0.5)
# 捕获坐标轴
ax = plt.gca()
# 隐藏坐标轴
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
# 轴标签旋转
pl.xticks(rotation=45)
# 添加x轴、y轴描述信息及标题
plt.xlabel("时间")
plt.ylabel("温度")
# 通过fontsize参数可以修改图像中字体的大小
plt.title("中午11点0分到12点之间的温度变化图示", fontsize=20)
# 注意:plt.show()会释放figure资源,如果在显示图像之后保存图片将只能保存空图片。
# 保存
plt.savefig("test.png")
# 3.显示图像
plt.show()
面向对象
import matplotlib.pyplot as plt
import random
from pylab import mpl
# 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = False
# 画出温度变化图
# 0.准备x, y坐标的数据
x = range(60)
y_shanghai = [random.uniform(15, 18) for i in x]
y_beijing = [random.uniform(1, 3) for j in x]
# 1.创建画布
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 8), dpi=100)
# 2.绘制图像
axes[0].plot(x, y_shanghai, label="上海")
axes[1].plot(x, y_shanghai, label="上海")
axes[1].plot(x, y_beijing, color="r", linestyle="--", label="北京")
# # 2.5 添加图例
axes[0].legend(loc=0)
axes[1].legend(loc=0)
# 构造x轴刻度
x_ticks_label = ["11点{}分".format(i) for i in x]
# 构造y轴刻度
y_ticks = range(40)
# 修改x,y轴坐标的刻度显示
axes[0].set_xticks(x[::5])
axes[0].set_yticks(y_ticks[::5])
axes[0].set_xticklabels(x_ticks_label[::5])
axes[1].set_xticks(x[::5])
axes[1].set_yticks(y_ticks[::5])
axes[1].set_xticklabels(x_ticks_label[::5])
# 增加网格
axes[0].grid(True, linestyle="--", alpha=0.5)
axes[1].grid(True, linestyle="--", alpha=0.5)
# 隐藏坐标轴
axes[0].spines['right'].set_color('none')
axes[0].spines['top'].set_color('none')
axes[1].spines['right'].set_color('none')
axes[1].spines['top'].set_color('none')
# 添加x轴、y轴描述信息及标题 通过fontsize参数可以修改图像中字体的大小
axes[0].set_xlabel("时间")
axes[0].set_ylabel("温度")
axes[0].set_title("中午11点--12点某城市温度变化图", fontsize=20)
axes[1].set_xlabel("时间")
axes[1].set_ylabel("温度")
axes[1].set_title("中午11点--12点某城市温度变化图", fontsize=20)
# 注意:plt.show()会释放figure资源,如果在显示图像之后保存图片将只能保存空图片。
# 保存
plt.savefig("test.png")
# 3.显示图像
plt.show()
扩展 : 直角坐标系
import numpy
import matplotlib.pyplot as plt
array_x = numpy.linspace(-10, 10, 100000)
array_y = [i * i * i for i in array_x]
plt.plot(array_x, array_y, color="red")
# 捕获坐标轴
ax = plt.gca()
# 隐藏坐标轴
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
# 使坐标轴居中
ax.spines['left'].set_position(('data', 0))
ax.spines['bottom'].set_position(('data', 0))
# 执行
plt.show()
常见图形种类及意义
具体参考文档:
https://matplotlib.org/index.html
折线图:
以折线的上升或下降来表示统计数量的增减变化的统计图
特点:能够显示数据的变化趋势,反映事物的变化情况。(变化)
api:plt.plot(x, y)
散点图:
用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。
特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律)
api:plt.scatter(x, y)
柱状图:
排列在工作表的列或行中的数据可以绘制到柱状图中。
特点:绘制连离散的数据,能够一眼看出各个数据的大小,比较数据之间的差别。(统计/对比)
api:plt.bar(x, width, align=‘center’, **kwargs)
Parameters:
x : 需要传递的数据
width : 柱状图的宽度
align : 每个柱状图的位置对齐方式
{‘center’, ‘edge’}, optional, default: ‘center’
**kwargs :
color:选择柱状图的颜色
直方图:
由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据范围,纵轴表示分布情况。
特点:绘制连续性的数据展示一组或者多组数据的分布状况(统计)
api:matplotlib.pyplot.hist(x, bins=None)
Parameters:
x : 需要传递的数据
bins : 组距
饼图:
用于表示不同分类的占比情况,通过弧度大小来对比各种分类。
特点:分类数据的占比情况(占比)
api:plt.pie(x, labels=,autopct=,colors)
Parameters:
x:数量,自动算百分比
labels:每部分名称
autopct:占比显示指定%1.2f%%
colors:每部分颜色