文章目录
本教程只是带领读者体验一下Maplotlib使用的基本方法
下一章我们将进行进阶教程
1.问题区
1.为什么 使用 plt.gcf().set_facecolor(np.ones(3)* 240 / 255) 后 plt.figure 会失效。
2. matplotlib.pyplot简介
Matplotlib 是 Python 的绘图库。 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案。 它也可以和图形工具包一起使用,如 PyQt 和 wxPython。
matplotlib.pyplot 是命令风格函数的集合,使 Matplotlib 像 MATLAB 一样工作。每个 Pyplot 函数对图形做一些修改,例如:创建一个图形,在图形中创建一个绘图区域,在绘图区域中回值一些线条,用标签装饰图形等等。
博主喜欢上来就看见学习结果,所以
看第一个程序:
import matplotlib.pyplot as plt
from matplotlib import pyplot as plt
if __name__ == '__main__':
#定义两个列表分别作为X,Y轴
x_data=['2011','2013','2015','2017','2019','2021']
y_data=['1','2','3','4','5','6']
#第一个列表表示横坐标,第二个列表示纵坐标
plt.plot(x_data,y_data)
#调用show()方法
plt.show()
结果:

(如果在plot()中只传入一个list,则默认作为Y轴数据)
1.Pyplot中的基础函数解析
| matplotlib.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs)[source] | |
|---|---|
| plot([x], y, [fmt], *, data=None, **kwargs) | |
| plot([x], y, [fmt], [x2], y2, [fmt2], …, **kwargs) |
点或线节点的坐标由x,y给出。
可选参数fmt是定义颜色、标记和线型等基本格式的方便方法。这是一种快捷的字符串表示法,在下面的注释部分有描述。
3. 使用Matplotlib画图基本步骤

1.基础方法解析 :
| plot中的方法 | 作用 |
|---|---|
| plt.xlabel(“发布日期”) | 设置x轴名称 |
| plt.ylabel(“小说数量”) | 设置y轴名称 |
| xticks() | 设置x轴刻度 |
| yticks() | 设置y轴刻度 |
| plt.title(“80小说网活跃度”) | 设置图像标题 |
| plt.legend(loc=“upper left”) | 设置折线声明位置 |
| plt.show() | 将图像展示出来 |
| plot中的方法 | 作用 |
|---|---|
| plt.gcf().set_facecolor(np.ones(3)* 240 / 255) | 生成画布的大小 |
| plt.grid() | 生成网格(可以设置线的格式) |
plt.figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True)
| plt.figure参数 | 作用 |
|---|---|
| num | 图像编号或名称,数字为编号 ,字符串为名称 |
| figsize | 指定figure的宽和高,单位为英寸figsize=(4,3) |
| dpi | 参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80 |
| facecolor | 背景颜色 |
| edgecolor | 边框颜色 |
| frameon | 是否显示边框 |
fig=plt.figure(figsize=(4,3),facecolor=‘blue')
2.基础参数解析:
| 函数中不同参数 | 作用 |
|---|---|
| plot(x, y) | 使用默认线型和颜色打印x和y |
| plot(x, y, ‘bo’) | 使用蓝色圆圈标记绘制x和y |
| plot(y) | 绘图y使用x作为索引数组0…N-1 |
| plot(y, ‘r+’) | 同上,但带有红色加号 |
| linewidth=“ ” | 设置线宽 |
| linestyle=“ ” | 设置线格式 |
| color=“ ” | |
| marker=" h / * / s / p " | 用来设置节点样式 |
| ms=1/5/10 | 设置节点大小 |
| label=" 折线代表的对象 " | 设置折线标题 |
(1)Line Styles线条形状:
| character | description |
|---|---|
| ‘-’ | solid line style 实线样式 |
| ‘–’ | dashed line style 虚线样式 |
| ‘-.’ | dash-dot line style 点划线样式 |
| ‘:’ | dotted line style 虚线样式 |
(2)Markers 折点形状选择:
| character | description |
|---|---|
| ‘.’ | point marker 点标记 |
| ‘,’ | pixel marker 像素标记 |
| ‘o’ | circle marker o形圈标记 |
| ‘v’ | triangle_down marker “v”形三角向下标记 |
| ‘^’ | triangle_up marker “^”三角形向上标记 |
| ‘<’ | triangle_left marker |
| ‘>’ | triangle_right marker '>'三角形\u右标记 |
| ‘1’ | tri_down marker “1”三角向下标记 |
| ‘2’ | tri_up marker “2”三角标记 |
| ‘3’ | tri_left marker “3”左标记 |
| ‘4’ | tri_right marker “4”tri\u右标记 |
| ‘s’ | square marker “s”方形标记 |
| ‘p’ | pentagon marker “p |

本文是关于Python的Matplotlib库的入门教程,介绍了如何使用matplotlib.pyplot进行数据可视化,包括基础函数解析,画图步骤,线条样式、折点形状、颜色的选择,以及如何管理多个子图。在实战部分展示了简单的二维图绘制,为初学者提供了清晰的学习路径。
最低0.47元/天 解锁文章
633

被折叠的 条评论
为什么被折叠?



