机器学习基本库之Matplotlib

Matplotlib是机器学习中一个非常重要进行可视化的库,能够将复杂的数据以图表的形式显示出来,非常的清晰直观。下面让我们来看一下它的用法。

import pandas as pd

unrate = pd.read_csv("UNRATE.csv")
unrate["DATE"] = pd.to_datetime(unrate["DATE"])  #将csv文件中的时间转换为标准的可以读取的时间
print(unrate.head(12))

运行结果:

     DATE  VALUE
0  1948-01-01    3.4
1  1948-02-01    3.8
2  1948-03-01    4.0
3  1948-04-01    3.9
4  1948-05-01    3.5
5  1948-06-01    3.6
6  1948-07-01    3.6
7  1948-08-01    3.9
8  1948-09-01    3.8
9  1948-10-01    3.7
10 1948-11-01    3.8
11 1948-12-01    4.0
import matplotlib.pyplot as plt

plt.plot()  #先画一个空白的图
plt.show()  #然后让他显示出来

  运行结果:

运行结果

first_twelve = unrate[0:12]  #先拿出前十二个数据
plt.plot(first_twelve["DATE"], first_twelve["VALUE"])  #分别传入x,y坐标
plt.xticks(rotation=45)  #将x坐标进行变换
plt.xlabel("Month")#代表xy的坐标含义
plt.ylabel("Rate")
plt.title("Monthly Employment Rate, 1948")#表格的标题
plt.show()

 运行结果:

fig=plt.figure(figsize=(10,9))#画图的区间并可以指定区域大小
ax1=fig.add_subplot(2,2,1)#表示2×2区间上的第一个子图
ax2=fig.add_subplot(2,2,2)
ax3=fig.add_subplot(2,2,4)
ax1.plot(range(5),range(5))
plt.show()

运行结果:

unrate["MONTH"]=unrate["DATE"].dt.month
fig=plt.figure(figsize=(16,9))
plt.plot(unrate[0:12]["MONTH"],unrate[0:12]["VALUE"],c="red")
plt.plot(unrate[12:24]["MONTH"],unrate[12:24]["VALUE"],c="blue")#C可以指定颜色
plt.legend(loc='best')
plt.show()

运行结果:

# plt.figure(figsize=(16,9))
colors=["red","blue","green","purple","black"]
for i in range(5):
    start_index=i*12
    end_index=(i+1)*12
    label=str(i+1948)#label表示右上方的指示
    plt.plot(unrate[start_index:end_index]["DATE"],unrate[start_index:end_index]["VALUE"],c=colors[i],label=label)
plt.legend(loc="best")#这段代码可以让指示显示出来
plt.show()
# print(help(plt.legend()))

 运行结果:

import pandas as pd
reviews = pd.read_csv('fandango_scores.csv')
cols = ['FILM', 'RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue', 'Fandango_Stars']
norm_reviews = reviews[cols]
print(norm_reviews[:1])

运行结果:

                    FILM  RT_user_norm  Metacritic_user_nom  \
0  Avengers: Age of Ultron (2015)           4.3                 3.55   

   IMDB_norm  Fandango_Ratingvalue  Fandango_Stars  
0        3.9                   4.5             5.0

import matplotlib.pyplot as plt
from numpy import arange
num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue', 'Fandango_Stars']#评分指标
bar_heights=norm_reviews.loc[0,num_cols].values#在柱形图的高
print(bar_heights)
bar_positions = arange(5) + 0.75#柱形图的横坐标
print(bar_positions)
plt.bar(bar_positions, bar_heights, 0.5)#bar函数表示画一个柱形图,0.5代表的是柱的宽度
plt.barh(bar_positions, bar_heights, 0.5)#barh函数表示竖着画
plt.show()

 运行结果:
 

plt.scatter(norm_reviews["Fandango_Ratingvalue"],norm_reviews["RT_user_norm"])#sactter函数用于创建散点图
plt.xlabel("Fandango")
plt.ylabel("Rotton Tamotos")
plt.show()

运行结果:

本程序中用到的数据集 提取码:xnhj

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值