自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(131)
  • 资源 (15)
  • 收藏
  • 关注

原创 深度学习3D可视化工具——Zetane Engine

神经网络在工作的时候,里面到底是什么样?为了能透视这个“AI黑箱”中的过程,加拿大蒙特利尔一家公司开发一个3D可视化工具Zetane Engine。只需要上传一个模型,Zetane Engine就可以巡视整个神经网络,并且还可以放大网络中的任何一层,显示特征图,看清流水线上的每一步。目前Zetane Engine不同系统的版本都可以在GitHub网站zetane中找到,不同版本的下载地址(左图为卷积层的特征图,右图为特征图的3D可视化)可视化AI工作流程首先,我们需要上传一个模型,上

2022-02-19 20:36:37 11036 14

原创 Python将模型参数文件(.pth/.pkl等)转换为ONNX格式

import torchimport pickleimport numpy as npmodel_path = r'./sVGG16.pkl' # 模型参数路径 dummy_input = torch.randn(1, 3, 256, 256) # 先随机一个模型输入的数据model = sVGG16() # 定义模型结构,此处是我自己设计的模型checkpoing = torch.lo

2022-02-19 16:56:38 4740 2

原创 【分类模型评价】宏平均(macro avg)、微平均(micro avg)和加权平均(weighted avg)

当我们使用 sklearn.metric.classification_report 工具对模型的测试结果进行评价时,会输出如下结果:对于 精准率(precision )、召回率(recall)、f1-score,他们的计算方法很多地方都有介绍,这里主要讲一下micro avg、macro avg 和weighted avg 他们的计算方式。1、宏平均 macro avg:对每个类别的 精准、召回和F1 加和求平均。精准macro avg=(P_no+P_yes) / 2=(0.24+0.73)

2022-02-14 11:28:04 20263 2

原创 医学图像特征激活图可视化库MedCAM

官网:https://meclabtuda.github.io/M3d-Cam/medcam/medcam_inject.htmlGithub网址:https://github.com/MECLabTUDA/M3d-Cam安装可直运行:pip install medcam# 或者conda install -c conda-forge medcam例子代码:# Import M3d-CAMfrom medcam import medcam# Init your model and da

2022-01-23 22:10:10 2389 1

转载 Ubuntu解决根分区满了进不去系统的解决方案

参考博客:linux 磁盘空间满了,排查记录关于linux磁盘莫名满的问题

2022-01-20 21:37:48 1821

原创 3D Slicer——配准篇(基于ANTs工具)详细教程

ANTs配准工具是配准是常用的工具之一,本篇主要讲基于3D slicer的ANTs配准基于Python的ANTs工具实现的配准和入门可见:医学图像配准工具ANTs的配置和入门相关函数的学习介绍可见:医学图像配准工具ANTs的学习——相关函数以及参数介绍1. 首先在插件扩展管理搜索‘SlicerANTs’,并安装2. 安装成功后在此便能看到 ANTs 选项3. 导入图像选择移动和固定图像,并选择配准方式4. 点击后开始配准...

2022-01-17 21:45:44 7775 12

原创 解决Ubuntu命令“sudo apt-get install”——“ E: 无法定位软件包”问题

1. 添加镜像源 (本文是清华源)。运行代码:sudo vim /etc/apt/sources.list添加如下内容:deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic main restricted universe multiverse# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic main restricted universe multiversed

2022-01-17 15:22:25 4699

原创 Ubuntu报错“写入失败(设备上没有空间),因为错误消息指示这是由于磁盘已满”,[即./boot分区空间不足问题]的完美解决方案

目录一、临时方案:直接删除旧的内核1.查看已安装的linux-image各版本和当前系统内核版本2.卸载其他版本二、彻底解决方案:对boot分区进行1.删除旧版本文件2.安装磁盘扩展工具3.运行GParted工具,并删除swap分区4.扩容boot分区5.新建分区作为新的Swap分区6.确认分区操作7.启动Swap分区三、系统分区建议前言由于近来 Ubuntu 更新,当时 boot 分区只留了 200M,每次升级都需要清除之前的系统,只留一个倒也能接受,但最近一次软件更新,boot 分区再也撑不住了,幸

2022-01-16 20:50:13 16874 2

原创 三行代码可视化神经网络特征图

在科研论文,方案讲解,模型分析中,合理解释特征图是对最终结果的一个加分项。但是之前的一些可视化特征图的方法往往会有一些麻烦,于是在这里给大家推荐一个非常方便实现这个目标的库 – Evison。Github链接: GitHub - JonnesLin/Evison: We provide an easy way for visualizing视频讲解链接: 教你三行代码可视化神经网络特征图_哔哩哔哩_bilibili代码:# 首先需要安装Evison!pip install Evisonfrom

2022-01-16 17:05:46 421 2

原创 Transformer的位置编码学习日志

参考链接Positional Encodings in ViTs 近期各视觉Transformer中的位置编码方法总结及代码解析 1个人觉得比较好的博客和视频:1.【一位大佬的博客,里面关于数学推导的内容较多】Sinusoidal 位置编码追根溯源对应的视频:Transformer 位置编码追根溯源;2.另外一个讲解视频Transformer的位置编码(Position Encoding)进展梳理视频对应的手稿:...

2021-12-31 17:15:56 1145

原创 Pytorch损失函数cross_entropy、binary_cross_entropy和binary_cross_entropy_with_logits的区别

在做分类问题时我们经常会遇到这几个交叉熵函数:cross_entropy、binary_cross_entropy和binary_cross_entropy_with_logits。那么他们有什么区别呢?下面我们就来探讨一下:1.torch.nn.functional.cross_entropydef cross_entropy(input, target, weight=None, size_average=None, ignore_index=-100, re

2021-12-31 16:34:03 6080 1

原创 医学影像常用Python包

一、图像操作类医学影像往往需要操作的图像种类较多,类似于nii图像,dicom图像等,传统的工具为SimpleITK ,NiBabel ,目前也有很多集成的工具,便于深度学习模型的使用和调优。1.TORCHIO(强烈推荐)TorchIO 是一个 Python 工具包,用于在用PyTorch编写的深度学习应用程序中高效读取、预处理、采样、增强和写入 3D 医学图像,包括用于数据增强和预处理的强度和空间变换。变换包括典型的计算机视觉操作,例如随机仿射变换,以及特定领域的操作,例如模拟由于MRI 磁场不均匀

2021-12-23 21:03:00 6983

原创 《深度学习——匹配》学习参考

机器视觉特征提取:HOG、SIFT、SURF、ORB、LBP、HAAR(https://mp.weixin.qq.com/s/DGV23WnMsq9o-Fnb0NKs5g)特征提取、特征描述、特征匹配的通俗解释:(https://www.pianshen.com/article/8410550640/)Homography matrix单应性矩阵:(https://cloud.tencent.com/developer/article/1084332);(https://zhuanlan.zhi

2021-12-16 20:28:21 2320

转载 数据增广Mosiac,MixUp,CutMix等.

参考博客:全网最全:盘点那些图像数据增广方式Mosiac,MixUp,CutMix等.

2021-12-10 21:29:34 678

原创 Pytorch的可视化学习日志2——Pytorch自带的Tensorboard

PyTorch 从 1.2.0 版本开始,正式自带内置的 Tensorboard 支持了,我们可以不再依赖第三方工具来进行可视化。本文将介绍 PyTorch 1.2.0 中自带 Tensorboard 的基本使用方法。安装PyTorch 的版本需要 1.2.0 :pip install --upgrade torch torchvision然后安装 Tensorboard 1.14 :pip install tensorboard安装完成后,引入响应包:Python 3.7.4 (def

2021-12-08 13:13:42 430

转载 数字图像处理——颜色空间汇总

参考博客:颜色空间总结数字图像处理之6大颜色空间

2021-11-23 23:29:07 527

原创 何为监督学习、无监督学习、强化学习、弱监督学习、半监督学习、多示例学习?

随着机器学习问题不断深入人心,人们也将现实中遇到不同的问题分为不同的学习方式,其中,最基础的应属监督学习,无监督学习和强化学习了。监督学习(supervised learning):已知数据和其一一对应的标签,训练一个智能算法,将输入数据映射到标签的过程。监督学习是最常见的学习问题之一,就是人们口中常说的分类问题。比如已知一些图片是猪,一些图片不是猪,那么训练一个算法,当一个新的图片输入算法的时候算法告诉我们这张图片是不是猪。无监督学习(unsupervised learning):已知数据不知道任何标

2021-11-23 21:43:48 2467

原创 OpenCV灰度化之后图片为绿色原因及解决办法

opencv读入JPG图片的颜色顺序是BGR(blue, green, red)skimage读入JPG图片颜色顺序是RGBmatplotlib在plt的时候是默认RGB显示的,所以img = cv2.imread(path)img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)print(img)plot.imshow(img) plot.show()此时显示的图片依旧是绿色的代码改成:img = cv2.imread(path) # 读取图片i

2021-11-15 23:13:34 6392

原创 PIL中的Image转化为数组array的方法

Pillow的使用-Image篇Image官方文档介绍链接PIL的Image.open()读入图片后并不是numpy数组array格式,而是Image格式。这对于后面图像处理以及神经网络读入图片数据会带来麻烦,例如用卷积神经网络读入数据一般以数组格式输入,有时需要将代表图片的矩阵形状进行转换,此时PIL的Image.open()读入的格式是不能用reshape方法的。处理方式其实很简单,用np.array()函数直接进行转换就可以。示例代码:将变成array的图片矩阵变回Image对象,使用Ima

2021-11-15 22:55:25 7168

原创 针对不平衡数据的loss——Focal loss

总述Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘。损失函数形式Focal loss是在交叉熵损失函数基础上进行的修改,首先回顾二分类交叉上损失:其中y‘是经过激活函数的输出,所以在0-1之间。可见普通的交叉熵对于正样本而言,输出概率越大损失越小。对于负样本而言,输出概率越小则损失越小。此时的损失函数在大量简单样本的迭代过程中比较缓慢且可能无法优化至最优。那么Focal loss

2021-11-13 14:59:52 2155

转载 PotPlayer字幕实时翻译扩展插件

参考博客:PotPlayer字幕实时翻译扩展插件potplayer插件_Potplayer 百度在线翻译插件

2021-10-29 11:59:48 9149

原创 深度学习模型的model.train() 和 model.eval()

训练完 train 样本后,生成的模型 model 要用来测试样本。在 model(test) 之前,需要加上model.eval(),否则只要有输入数据,即使不训练,model 也会改变权值。这是model中含有的 batch normalization 层所带来的的性质。因此在验证和测试做model.eval()时,框架会自动把BN和DropOut固定住,不会取平均,而是用训练好的值,不然的话,一旦test的batch_size过小,很容易就会被BN层导致生成图片颜色失真极大。model.train

2021-10-26 14:56:20 2244

原创 深度学习中学习率调整策略

参考博客:系统学习Pytorch笔记七:优化器和学习率调整策略pytorch优化器学习率调整策略以及正确用法Pytorch使用ReduceLROnPlateau来更新学习率分类模型参数调整的Github参考代码

2021-10-24 13:54:51 2864

原创 Window10与Ubuntu之间的文件传输——FileZilla实现

通过免费的FTP传输软件FileZilla实现双向传输,只需将该软件下载到window10下。一、Window10下载FileZilla因为FileZilla可以实现双向传输,所以只要window10下载后连接上Ubuntu后便可以实现文件从window10传到ubuntu和从ubuntu传到window10.二、Ubuntu安装传输服务——两种方案方案一:FTP服务sudo apt-get install vsftpd # 在终端安装FTP服务sudo gedit etc/vsftp

2021-10-08 20:59:01 1858

原创 Ubuntu开机默认进入命令行模式/用户图形界面

一、开机默认进入命令行模式# 输入命令:sudo systemctl set-default multi-user.target # 重启:reboot要进入图形界面,只需要输入命令startx从图形界面切换回命令行:ctrl+alt+F7二、开机默认进入图形用户界面# 输入命令:sudo systemctl set-default graphical.target # 重启:reboot要进入命令行模式:ctrl+alt+F2从命令行切换到图形界面:ctrl+alt+F7

2021-10-08 19:32:53 12867 2

原创 ROC/AUC曲线学习及Python实现

参考博客:【机器学习笔记】:一文让你彻底理解准确率,精准率,召回率,真正率,假正率,ROC/AUC一、准确率,精准率,召回率1.TP、TN、FP、FN概念P(Positive):代表1N(Negative):代表0T(True):代表预测正确F(False):代表错误以上四种情况可理解为:先看 ①预测结果(P/N),再根据②实际表现对比预测结果,给出判断结果(T/F)。如:TP: 预测为1,预测正确,即实际1FP: 预测为1,预测错误,即实际0FN: 预测为0,预测错误,即实际1

2021-10-06 17:56:35 23100 6

转载 快速搭建一个本地的FTP服务器

参考链接:快速搭建一个本地的FTP服务器

2021-10-06 16:12:36 279

转载 解决神州网信版Windows 10文件共享问题

https://m.bilibili.com/video/av929794143/

2021-10-06 16:08:59 8558

原创 Python的excel工作簿写入与读取操作

写入方式(一)——xlwtxlwt(excel write)是一个用于将数据写入excel中的库,这个库只能用于写较老的excel文件(.xls格式),无法写.xlsx格式文件,并且无法修改一个已有的excel文件。该方法写入时,只能循环一个一个数据写入,比如数组无法一次性写入行import xlwtimport numpy as npa = [[1,2,3],[4,5,6],[7,8,9]]ar = np.array(a)book = xlwt.Workbook() # 创建Excel

2021-09-26 18:24:42 2736

原创 在windows10上安装Linux双系统

参考链接:https://www.cnblogs.com/Duane/p/5424218.htmlhttps://www.cnblogs.com/Duane/articles/6776302.html解决安装完系统后,重启默认打开windows系统同时不跳出系统选择界面的方法:(Bios设置)https://www.it610.com/article/1290672088419475456.htm...

2021-09-18 20:26:24 389

原创 Pytorch的可视化学习日志1——TensorboardX

PyTorch 自身的可视化功能没有 TensorFlow 的 tensorboard 那么优秀,所以 PyTorch通常是借助 tensorboard(是借助,非直接使用)进行可视化,所以所用库的名字为tensorboardX。tensorboardX 最早叫 tensorboard,但此名易引起混淆,之后改为 tensorboardX, whichstands for tensorboard for X。Github网址:https://github.com/lanpa/tensorboardX

2021-09-17 12:02:33 416

原创 解决OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.

报错代码如下:OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.OMP: Hint This means that multiple copies of the OpenMP runtime havebeen linked into the program. That is dangerous, since it can degradeperformance or

2021-09-14 13:07:58 2011 1

原创 Pytorch模型的保存及加载

深度学习模型保存模型参数的方法有两种:1.保存整个网络(模型结构+模型参数):# 保存整个模型和参数torch.save(model_object, 'convit_tiny.pth') # 对应的加载模型代码为model = torch.load('convit_tiny.pth')print(model)此时print的是整个网络的模型结构;若要加载模型的参数:model = torch.load('convit_tiny.pth')args = model.stat

2021-09-13 15:49:25 1799

转载 pytorch建立自己的数据集Dataset

参考博客:pytorch建立自己的数据集Dataset

2021-09-11 12:03:04 281

原创 Python打开.pkl文件

.pkl文件是python保存文件的一种文件格式,如果直接打开会显示一堆序列化的东西。需要使用rb类型来打开rb – 读取2进制文件,r – 读取文本文件# cPickle是python2系列用的,3系列已经不用了,直接用pickle就好了import pickledata = pickle.load( open('a.pkl','rb')) #记得加上'rb'print(data)...

2021-09-09 17:31:34 6103

转载 pytorch多卡训练笔记

参考博客:pytorch 分布式训练 distributed parallel 笔记

2021-09-09 11:37:17 237

原创 Python的super()函数

描述super() 函数是用于调用父类(超类)的一个方法。super() 是用来解决多重继承问题的,直接用类名调用父类方法在使用单继承的时候没问题,但是如果使用多继承,会涉及到查找顺序(MRO)、重复调用(钻石继承)等种种问题。MRO 就是类的方法解析顺序表, 其实也就是继承父类方法时的顺序表。语法以下是 super() 方法的语法:super(type[, object-or-type])参数type -- 类。object-or-type -- 类,一般是 selfPython

2021-09-08 17:35:58 528

原创 关于深度学习可视化解释的显著性map学习笔记

深度学习可视化解释的显著性map学习笔记(1)CAM(Classification Activation Mapping,类激活图)。目的在于定位出图像上的哪些区域帮助CNN完成了图像的分类。普通的CNN网络,一般分成特征提取和特征分类两大模块,CAM的实现为对输出的特征进行GAP(Global Average Pooling),得到数量等于输出channel数的一个向量。后面再接一个全连接层,输入神经元数量等于feature的channel数,输出神经元的数量等于数据集的类别数。这样的网络训练完成图像

2021-08-27 18:23:18 3100

转载 Numpy的ascontiguousarray

1. 概述在使用Numpy的时候,有时候会遇到下面的错误:AttributeError: incompatible shape for a non-contiguous array看报错的字面意思,好像是不连续数组的shape不兼容。有的时候,在看别人代码时会看到ascontiguous()这样的一个函数,查文档会发现函数说明只有一句话:“Return a contiguous array (ndim >= 1) in memory (C order).”光靠这些信息,似乎没能道出Num

2021-08-27 15:06:50 1676

原创 Pytorch的数据增强、模型构建、模型可视化思维导图

Pytorch学习日志、思维导图原件以及代码可在此处下载:https://download.csdn.net/download/Joker00007/20439865

2021-07-23 21:13:36 403

一种基于CT图像的肝肿瘤组合分割法_陈亮亮

本论文讲的是:一种基于CT图像的肝肿瘤组合分割法,对CT图像分割有一定价值

2019-04-08

elastix-5.0.1-manual.pdf

配准软件Elastix学习文档

2020-12-22

Win10多用户操作以及Win10家庭版远程桌面问题最新补丁

可实现Win10多用户操作,以及解决Win10家庭版远程桌面问题

2023-02-16

放疗计划matlab工具包matrad

放疗计划设计,逆向优化matlab工具包matrad

2022-12-27

DICOM查看器dicompyler安装包

查看DICOM头文件信息,包括RT structure、RTPlan、RDose文件

2022-11-07

dicompyler使用的DICOM / DICOM RT的核心放射治疗Python模块库

dicompyler使用的DICOM / DICOM RT的核心放射治疗Python模块库

2022-11-07

官方分割模型nnUnet的github仓库项目

官方分割模型nnUnet的github仓库项目

2022-07-01

配准ANTs工具的官方介绍文档

配准ANTs工具的官方介绍文档

2022-05-26

Win10多用户操作最新补丁

Win10多用户操作最新RDPWrap补丁

2022-03-05

深度学习的3D可视化工具Zetane——Linux版本

深度学习的3D可视化工具Zetane——Linux版本

2022-02-19

深度学习的3D可视化工具Zetane——windows版本

深度学习的3D可视化工具Zetane——windows版本

2022-02-19

surface-distance-master.zip

图像分割评估指标——表面距离计算库: 这个库主要包含了以下几个表面距离计算: Average surface distance 平均表面距离 Hausdorff distance 豪斯多夫距离 Surface overlap 表面重叠度 Surface dice 表面dice值 Volumetric dice 三维dice值

2020-08-17

图形库graphviz-V2.38.msi.rar

跨平台的图形库graphviz安装包,可用于提供方便的树图等导出,官网下载比较慢,上传一个备用。

2020-02-13

无线充电.rar

无线电动小车设计报告两篇,包含代码

2019-08-08

Elastix安装包与代码

配准工具Elastix程序安装包和github代码

2021-01-07

显著性Map—相关代码.zip

深度学习常见显著性Map代码示例

2021-08-27

PyTorch学习日志.zip

深度学习框架Pytorch学习文件以及思维导图,包括数据增强、模型构建、模型可视化tensorboardX等(包含学习代码)

2021-07-23

机器学习:实用案例解析

本书籍主要针对机器学习的新手,书里有大量机器学习的实用案例解析

2019-04-08

《机器学习实战基于Scikit-Learn和TensorFlow》

《机器学习实战基于Scikit-Learn和TensorFlow》

2019-04-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除