医学影像处理
文章平均质量分 63
本人是新手小白,这专栏是自己学习中遇到问题以及个人学习分享
Joker 007
这个作者很懒,什么都没留下…
展开
-
分割模型nnUNet学习日记(四):汇总
参考:原创 2023-07-14 23:31:56 · 640 阅读 · 0 评论 -
医学图像包——DCMTK、VTK、ITK、RTK、SimpleITK
医学图像包——DCMTK、VTK、ITK、RTK、SimpleITK原创 2022-12-28 14:19:00 · 3518 阅读 · 0 评论 -
基于稀疏表达的图像融合相关知识
基于稀疏表达的图像融合相关知识原创 2022-12-04 16:31:21 · 305 阅读 · 0 评论 -
检测任务评估指标AP和AR
检测任务评估指标原创 2022-09-22 14:17:39 · 3433 阅读 · 0 评论 -
分割模型nnUNet学习日记(三):nnUNet参数batch_size和patch_size的修改方式
分割模型nnUNet学习日记(三):nnUNet参数batch_size和patch_size的修改方式原创 2022-07-03 20:35:53 · 5634 阅读 · 4 评论 -
分割模型nnUNet学习日记(一):在Ubuntu系统下如何快速使用nnUNet跑通自己的数据
分割模型nnUNet学习日记(一):在Ubuntu系统下如何快速使用nnUNet跑通自己的数据原创 2022-07-02 18:45:15 · 4870 阅读 · 3 评论 -
分割模型nnUNet学习日记(二):常见问题报错解决方案
分割模型nnUNet学习日记(二):常见问题报错解决方案原创 2022-07-02 17:44:10 · 1258 阅读 · 0 评论 -
ROC/AUC曲线学习及Python实现
参考博客:【机器学习笔记】:一文让你彻底理解准确率,精准率,召回率,真正率,假正率,ROC/AUC一、准确率,精准率,召回率1.TP、TN、FP、FN概念P(Positive):代表1N(Negative):代表0T(True):代表预测正确F(False):代表错误以上四种情况可理解为:先看 ①预测结果(P/N),再根据②实际表现对比预测结果,给出判断结果(T/F)。如:TP: 预测为1,预测正确,即实际1FP: 预测为1,预测错误,即实际0FN: 预测为0,预测错误,即实际1原创 2021-10-06 17:56:35 · 19817 阅读 · 4 评论 -
Python中SimpleITK库的常用函数
在医学图像上经常使用的一个Python库SimpleITK,下面介绍其常用的函数:原创 2022-06-07 14:05:50 · 5025 阅读 · 2 评论 -
使用opencv实现16位图转8位图
最近在处理一批.tif格式的数据,但是由于设备导出的数据是16位图,因此一般图片查看器打开都是一片黑。采用opencv实现16位tif图转换成8位图原创 2022-06-02 21:25:41 · 4255 阅读 · 5 评论 -
影像基础-----CT-MRI图像的特点和临床应用
CT图像的特点1.CT图像是数字化模拟灰度图像CT图像是经数字转换的重建模拟图像,是由一定数目从黑到白不同灰度的像素按固有矩阵排列而成。这些像素的灰度反映的是相应体素的X线吸收系数。如同X线图像,CT图像亦是用灰度反映器官和组织对X线的吸收程度。其中黑影表示低吸收区,即低密度区,如含气的肺组织;灰影表示中等吸收区,即中等密度区,如软组织的肌肉或脏器;白影表示高吸收区,即高密度区,如含钙量高的骨组织。2.CT图像具有高的密度分辨力与传统X线图像不同,CT图像的密度分辨力高,相当于传统X线图像的10~原创 2022-02-21 22:54:31 · 10357 阅读 · 0 评论 -
三行代码可视化神经网络特征图
在科研论文,方案讲解,模型分析中,合理解释特征图是对最终结果的一个加分项。但是之前的一些可视化特征图的方法往往会有一些麻烦,于是在这里给大家推荐一个非常方便实现这个目标的库 – Evison。Github链接: GitHub - JonnesLin/Evison: We provide an easy way for visualizing视频讲解链接: 教你三行代码可视化神经网络特征图_哔哩哔哩_bilibili代码:# 首先需要安装Evison!pip install Evisonfrom原创 2022-01-16 17:05:46 · 329 阅读 · 2 评论 -
Transformer的位置编码学习日志
参考链接Positional Encodings in ViTs 近期各视觉Transformer中的位置编码方法总结及代码解析 1个人觉得比较好的博客和视频:1.【一位大佬的博客,里面关于数学推导的内容较多】Sinusoidal 位置编码追根溯源对应的视频:Transformer 位置编码追根溯源;2.另外一个讲解视频Transformer的位置编码(Position Encoding)进展梳理视频对应的手稿:...原创 2021-12-31 17:15:56 · 1052 阅读 · 0 评论 -
医学影像常用Python包
一、图像操作类医学影像往往需要操作的图像种类较多,类似于nii图像,dicom图像等,传统的工具为SimpleITK ,NiBabel ,目前也有很多集成的工具,便于深度学习模型的使用和调优。1.TORCHIO(强烈推荐)TorchIO 是一个 Python 工具包,用于在用PyTorch编写的深度学习应用程序中高效读取、预处理、采样、增强和写入 3D 医学图像,包括用于数据增强和预处理的强度和空间变换。变换包括典型的计算机视觉操作,例如随机仿射变换,以及特定领域的操作,例如模拟由于MRI 磁场不均匀原创 2021-12-23 21:03:00 · 6182 阅读 · 0 评论 -
《深度学习——匹配》学习参考
机器视觉特征提取:HOG、SIFT、SURF、ORB、LBP、HAAR(https://mp.weixin.qq.com/s/DGV23WnMsq9o-Fnb0NKs5g)特征提取、特征描述、特征匹配的通俗解释:(https://www.pianshen.com/article/8410550640/)Homography matrix单应性矩阵:(https://cloud.tencent.com/developer/article/1084332);(https://zhuanlan.zhi原创 2021-12-16 20:28:21 · 1559 阅读 · 0 评论 -
数字图像处理——颜色空间汇总
参考博客:颜色空间总结数字图像处理之6大颜色空间转载 2021-11-23 23:29:07 · 426 阅读 · 0 评论 -
针对不平衡数据的loss——Focal loss
总述Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘。损失函数形式Focal loss是在交叉熵损失函数基础上进行的修改,首先回顾二分类交叉上损失:其中y‘是经过激活函数的输出,所以在0-1之间。可见普通的交叉熵对于正样本而言,输出概率越大损失越小。对于负样本而言,输出概率越小则损失越小。此时的损失函数在大量简单样本的迭代过程中比较缓慢且可能无法优化至最优。那么Focal loss原创 2021-11-13 14:59:52 · 1682 阅读 · 0 评论 -
关于深度学习可视化解释的显著性map学习笔记
深度学习可视化解释的显著性map学习笔记(1)CAM(Classification Activation Mapping,类激活图)。目的在于定位出图像上的哪些区域帮助CNN完成了图像的分类。普通的CNN网络,一般分成特征提取和特征分类两大模块,CAM的实现为对输出的特征进行GAP(Global Average Pooling),得到数量等于输出channel数的一个向量。后面再接一个全连接层,输入神经元数量等于feature的channel数,输出神经元的数量等于数据集的类别数。这样的网络训练完成图像原创 2021-08-27 18:23:18 · 2348 阅读 · 0 评论 -
如何理解“特征提取(Detect)、特征描述(Descriptor)、特征匹配(Match)”
特征匹配(Feature Match) 是计算机视觉中很多应用的基础,比如说图像配准,摄像机跟踪,三维重建,物体识别,人脸识别。首先通过几张图片来指出什么是特征匹配,以及特征匹配的过程。图像一:彩色圆圈为图像的特征点图像二:图像一与图像二的匹配:概念理解: 什么是特征,什么是特征描述,什么是特征匹配假设这样的一个场景,小白和小黑都在看一个图片,但是他们想知道他们看的是否是同一幅图片,于是他们就通过电话描述这个图片,来判断是否是同一个图片。比如说有下面两个图片对话1:小白:我的图片里面原创 2021-04-11 17:58:47 · 1177 阅读 · 0 评论 -
医学图像配准工具ANTs的学习——相关函数以及参数介绍
ants.registration(fixed, moving, type_of_transform=‘SyN’, initial_transform=None, outprefix=’’, mask=None, grad_step=0.2, flow_sigma=3, total_sigma=0, aff_metric=‘mattes’, aff_sampling=32, aff_random_sampling_rate=0.2, syn_metric=‘mattes’, syn_sampling=32,原创 2021-03-06 16:17:52 · 6136 阅读 · 10 评论 -
医学图像配准工具Elastix学习七大章
第一章 介绍第二章 图像配准第三章 elastix第四章 transformix第五章 教程第六章 高级主题第七章 开发者指南附录 A——示例参数文件附录 B——示例变换参数文件附录 C——实践练习详细内容可查看官方文档...转载 2021-03-05 11:29:39 · 882 阅读 · 0 评论 -
医学图像配准工具ANTs的配置和入门
医学图像配准工具ANTs的配置和入门原创 2021-01-19 11:44:59 · 3983 阅读 · 2 评论 -
医学图像配准工具SimpleElastix的配置和入门
医学图像配准工具常见有ITK,SimpleITK,ANTs,Elastix,SimpleElastix原创 2021-01-09 20:17:53 · 4938 阅读 · 3 评论 -
Linux上安装Matlab2020a
目录一、下载“Crack”和”ISO”镜像文件二、安装MATLAB1、挂载镜像并开始运行 install 文件2、选择“使用密钥安装”3、取消挂载三、激活MATLAB四、创建快捷启动方式一、下载“Crack”和”ISO”镜像文件安装包及破解文件链接:链接:https://pan.baidu.com/s/1GZZnDQ3QSt0AhZoZ3LAX2A 提取码:5ko2二、安装MATLAB1、挂载镜像并开始运行 install 文件cd ~ # 切换到home目原创 2021-01-11 16:45:41 · 21158 阅读 · 26 评论 -
3D Slicer中文教程
3D Slicer中文教程(一)—下载及安装方法3D Slicer中文教程(二)—软件功能界面介绍3D Slicer中文教程(三)—数据加载及保存方式3D Slicer中文教程(四)—图像分割3D Slicer中文教程(五)—三维视图颜色改变3D Slicer中文教程(六)—调用matlab函数(MatlabBridge使用方法)3D Slicer中文教程(七)—图像中值滤波3D Slicer中文教程(八)—导出STL文件...转载 2020-09-26 16:48:08 · 15875 阅读 · 5 评论 -
放射组学常用到的一些工具(软件)
放射组学常用到的一些工具原创 2020-08-13 16:22:16 · 4578 阅读 · 2 评论 -
医学图像的CT值与像素值总结及转换代码
一、CT图像的调窗CT值又叫HU值。HU(Hounsfiled Unit)值,反映了组织对X射线吸收程度。以水的吸收程度作为参考,即水的HU=0,衰减系数大于水的为正直,小于水的为负值。并以骨皮质和空气的HU值为上限和下限。因为HU值是与设备无关的,不同范围之内的值可以代表不同器官。HU的范围一般来说很大,这就导致了对比度很差,如果需要针对具体的器官进行处理,效果会不好,于是就有了调窗(windowing)的方法。图像的亮度取决于window level,图像的对比度取决于window width。原创 2020-12-17 20:48:30 · 17891 阅读 · 11 评论 -
图像分割评估指标——surface-distance计算库
一、简介当我们评价图像分割的质量和模型表现时,经常会用到各类表面距离的计算。这里推荐一个deepmind的表面距离度量计算库surface-distance。该库的下载地址:https://download.csdn.net/download/Joker00007/12718748Github地址:https://github.com/deepmind/surface-distance(注:Github上的代码存在Bug,可直接在第一个链接下载,该文件是已经改完错误的)这个库主要包含了以下几个表面原创 2020-08-17 22:10:53 · 9599 阅读 · 21 评论 -
卷积层和池化层后size输出公式
一、卷积中的相关函数的参数定义如下:in_channels(int) – 输入信号的通道out_channels(int) – 卷积产生的通道kerner_size(int or tuple) - 卷积核的尺寸stride(int or tuple, optional) - 卷积步长padding (int or tuple, optional)- 输入的每一条边补充0的层数dilation(int or tuple, optional) – 卷积核元素之间的间距groups(int, opt原创 2020-08-17 20:53:51 · 3779 阅读 · 0 评论 -
一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD
目标检测模型转载 2020-08-17 11:38:23 · 220 阅读 · 0 评论