矩阵论:子空间的交与和

矩阵论:子空间的交与和


前言:子空间的定义已经在上一篇文章中介绍过,此处不再重复。

一、关于子空间的几何理解

例题

R 3 R^{3} R3中的集合:
V 1 = { ( x , y , z ) ∣ 3 x + 2 y − 5 z = 1 } V_{1} = \{(x,y,z)|3x+2y-5z=1\} V1={(x,y,z)3x+2y5z=1}
V 2 = { ( x , y , z ) ∣ 3 x + 2 y + 5 z = 0 } V_{2} = \{(x,y,z)|3x+2y+5z=0\} V2={(x,y,z)3x+2y+5z=0}
判断 V 1 V_{1} V1 V 2 V_{2} V2是否为 R 3 R^{3} R3的子空间

V 1 V_{1} V1不是子空间,因为它对于数乘不封闭。反例: α = ( 1 3 , 0 , 0 ) \alpha = (\frac{1}{3}, 0,0) α=(31,0,0) β = 2 α \beta=2\alpha β=2α,容易验证 α \alpha α在集合 V 1 V_{1} V1中而 β \beta β不在。
对于 V 2 V_{2} V2,可以将其看成一个齐次线性方程组的解空间,所以它是一个子空间。

定理

一般来说,有下面命题成立:

对于R上的线性空间 R n R^{n} Rn,如果其子空间V几何上可以表示为过 R n R^{n} Rn原点的超平面,则V是 R n R^{n} Rn的子空间。

这一命题的含义实际上是:V是n元线性齐次方程的解空间。

二、空间的和运算

定理

如果是普通的集合中交、并的运算,我们有以下定理成立:

对于线性空间V的两个子空间 V 1 , V 2 V_{1}, V_{2} V1,V2 V 1 ∪ V 2 V_{1}\cup V_{2} V1V2不是V的子空间, V 1 ∩ V 2 V_{1}\cap V_{2} V1V2是V的子空间。

证明比较容易,这里省略。

定义

为了弥补集合并运算不能构造子空间的遗憾,我们定义子空间的“和运算”来作为与交运算相对的运算。

假设 V 1 , V 2 ⊆ V V_{1},V_{2}\subseteq V V1,V2V,定义:
V 1 ∩ V 2 = { η ∈ V ∣ η ∈ V 1 ∧ η ∈ V 2 } V_{1}\cap V_{2}=\{\eta\in V| \eta\in V_{1}\wedge \eta\in V_{2}\} V1V2={ηVηV1ηV2}
V 1 + V 2 = { ∃ η 1 ∈ V 1 , η 2 ∈ V 2 , s . t .   η = η 1 + η 2 } V_{1}+V_{2}=\{\exists \eta_{1}\in V_{1}, \eta_{2}\in V_{2},s.t.\ \eta=\eta_{1}+\eta_{2}\} V1+V2={η1V1,η2V2,s.t. η=η1+η2}

此时,有以下定理成立:

V 1 ∩ V 2 , V 1 + V 2 V_{1}\cap V_{2}, V_{1}+V_{2} V1V2,V1+V2是V的子空间,并且有: V 1 ∪ V 2 ⊆ V 1 + V 2 V_{1}\cup V_{2}\subseteq V_{1}+V_{2} V1V2V1+V2成立。

对于和运算,有以下命题成立:

V 1 = L ( α 1 , α 2 , . . . , α s ) ,   V 2 = L ( β 1 , β 2 , . . . , β n ) V_{1}=L(\alpha_{1}, \alpha_{2},...,\alpha_{s}),\ V_{2}=L(\beta_{1},\beta_{2},...,\beta_{n}) V1=L(α1,α2,...,αs), V2=L(β1,β2,...,βn),则: V 1 + V 2 = L ( α 1 , α 2 , . . . , α s , β 1 , β 2 , . . . , β n ) V_{1}+V_{2}=L(\alpha_{1},\alpha_{2},...,\alpha_{s},\beta_{1},\beta_{2},...,\beta_{n}) V1+V2=L(α1,α2,...,αs,β1,β2,...,βn)

证明
只要证明两边相互包含即可。
1.左边 ⊆ \subseteq 右边
根据和运算的定义,对空间 V 1 ∪ V 2 V_{1}\cup V_{2} V1V2有: ∀ η ∈ V 1 + V 2 , ∃ η 1 ∈ V 1 , η 2 ∈ V 2 , s . t   η = η 1 + η 2 \forall \eta \in V_{1}+V_{2},\exists \eta_{1}\in V_{1},\eta_{2}\in V_{2},s.t \ \eta=\eta_{1}+\eta_{2} ηV1+V2,η1V1,η2V2,s.t η=η1+η2,所以左边 ⊆ \subseteq 右边。
2.右边 ⊆ \subseteq 左边
对于 L ( α 1 , α 2 , . . . , α s , β 1 , β 2 , . . . , β n ) L(\alpha_{1},\alpha_{2},...,\alpha_{s},\beta_{1},\beta_{2},...,\beta_{n}) L(α1,α2,...,αs,β1,β2,...,βn)内任一元素,可以用 α \alpha α β \beta β表示,所以右边 s u b s e t e q subseteq subseteq左边。
证毕

三、维数定理

假设 V 1 , V 2 ≤ V V_{1},V_{2}\leq V V1,V2V,有 d i m ( V 1 + V 2 ) = d i m V 1 + d i m V 2 − d i m ( V 1 ∩ V 2 ) dim(V_{1}+V_{2})=dimV_{1}+dimV_{2}-dim(V_{1}\cap V_{2}) dim(V1+V2)=dimV1+dimV2dim(V1V2)

证明:
推荐阅读此博客的证明。

例题

已知 A = ( 1 1 1 1 1 − 1 2 2 3 1 4 4 ) , B = ( 1 2 1 1 2 1 2 2 ) , V 1 = { x ∈ F 4 ∣ A x = θ } , V 2 = { x ∈ F 4 ∣ B x = θ } A=\begin{pmatrix} 1&1&1&1\\1&-1&2&2\\3&1&4&4\end{pmatrix},B=\begin{pmatrix}1&2&1&1\\2&1&2&2\end{pmatrix},V_{1}=\{x\in F^{4}|Ax=\theta\},V_{2}=\{x\in F^{4}|Bx=\theta\} A=113111124124,B=(12211212),V1={xF4Ax=θ},V2={xF4Bx=θ},求 V 1 ∩ V 2 , V 1 + V 2 V_{1}\cap V_{2},V_{1}+V_{2} V1V2,V1+V2的基和维数。( θ \theta θ表示零向量)

思路:
先求 V 1 ∩ V 2 V_{1}\cap V_{2} V1V2的基和维数。利用分块矩阵将空间 V 1 ∩ V 2 V_{1}\cap V_{2} V1V2的基写作 ( A B ) x = θ \begin{pmatrix}A\\B\end{pmatrix}x=\theta (AB)x=θ

定义

V 1 , V 2 ≤ V V_{1},V_{2}\leq V V1,V2V,若 ∀ η ∈ V 1 + V 2 , ∃ \forall \eta \in V_{1}+V_{2},\exists ηV1+V2,唯一的 η 1 ∈ V 1 , η 2 ∈ V 2 \eta_{1}\in V_{1},\eta_{2}\in V_{2} η1V1,η2V2使得 η = η 1 + η 2 \eta=\eta_{1}+\eta_{2} η=η1+η2。则称 V 1 + V 2 V_{1}+V_{2} V1+V2是直和,记作 V 1 ⊕ V 2 V_{1}\oplus V_{2} V1V2.

定理

V 1 , V 2 ≤ V V_{1},V_{2}\leq V V1,V2V,则下述命题是等价的
1. V 1 ⊕ V 2 V_{1}\oplus V_{2} V1V2是直和
2. θ \theta θ的表示方式是唯一的
3. V 1 ∩ V 2 = θ V_{1}\cap V_{2}=\theta V1V2=θ
4. d i m ( V 1 + V 2 ) = d i m V 1 + d i m V 2 dim(V_{1}+V_{2})=dimV_{1}+dimV_{2} dim(V1+V2)=dimV1+dimV2
5.将 V 1 , V 2 V_{1},V_{2} V1,V2的基合在一起就是 V 1 ⊕ V 2 V_{1}\oplus V_{2} V1V2的基

下面给出部分证明:
2 → 3 2\rightarrow3 23:假设 η ∈ V 1 ∩ V 2 \eta \in V_{1}\cap V_{2} ηV1V2,由于 V 1 , V 2 V_{1},V_{2} V1,V2都是子空间,所以有 η ∈ V 1 , − η ∈ V 2 \eta\in V_{1},-\eta\in V_{2} ηV1,ηV2,所以得到零向量的表达方式: θ = η + ( − η ) \theta=\eta + (-\eta) θ=η+(η),由于零向量的表达方式是唯一的,所以 η = θ \eta = \theta η=θ
3 → 4 、 4 → 3 3\rightarrow4、4\rightarrow3 3443:由于 d i m { θ } = 0 dim\{\theta\}=0 dim{θ}=0,根据维数定理可知其成立。
3 → 1 3\rightarrow1 31:假设存在 α 1 ∈ V 1 , β 1 ∈ V 2 ; α 2 ∈ V 1 , β 2 ∈ V 2 \alpha_{1} \in V_{1},\beta_{1} \in V_{2}; \alpha_{2}\in V_{1},\beta_{2}\in V_{2} α1V1,β1V2;α2V1,β2V2,使得 α 1 + β 1 = α 2 + β 2 \alpha_{1}+\beta_{1}=\alpha_{2}+\beta_{2} α1+β1=α2+β2。移项得 α 1 − α 2 = β 1 − β 2 \alpha_{1}-\alpha_{2}=\beta_{1}-\beta_{2} α1α2=β1β2,由于 V 1 ∩ V 2 = { θ } V_{1}\cap V_{2}=\{\theta\} V1V2={θ},可知 α 1 = α 2 , β 1 = β 2 \alpha_{1}=\alpha_{2},\beta_{1}=\beta_{2} α1=α2,β1=β2

例题

已知 F n × n F^{n\times n} Fn×n的子空间
V 1 = { A ∣ A T = A } , V 2 = { A ∣ A T = − A } V_{1}=\{A|A^{T}=A\},V_{2}=\{A|A^{T}=-A\} V1={AAT=A},V2={AAT=A},证明: F n × n = V 1 ⊕ V 2 F^{n\times n}=V_{1}\oplus V_{2} Fn×n=V1V2

证明:
首先需要证明 V 1 , V 2 V_{1},V_{2} V1,V2的和是直和,可以使用 V 1 ∩ V 2 = { θ } V_{1}\cap V_{2} =\{\theta\} V1V2={θ}证明。然后证明 F n × n = V 1 ⊕ V 2 F^{n\times n}=V_{1}\oplus V_{2} Fn×n=V1V2时,可以采用两边互为子集的方式,注意此处有公式: A = 1 2 ( A + A T ) + 1 2 ( A − A T ) A = \frac{1}{2}(A+A^{T})+\frac{1}{2}(A-A^{T}) A=21(A+AT)+21(AAT)

A ∈ F n × n A\in F^{n\times n} AFn×n,且 A 2 = A A^{2}=A A2=A
V 1 = { x ∈ F n ∣ A x = θ } , V 2 = { x ∈ F n ∣ A x = x } V_{1}=\{x\in F^{n}|Ax=\theta\},V_{2}=\{x\in F^{n}|Ax=x\} V1={xFnAx=θ},V2={xFnAx=x}
证明 F n = V 1 ⊕ V 2 F^{n}=V_{1}\oplus V_{2} Fn=V1V2

证明:
还是首先证明 V 1 , V 2 V_{1},V_{2} V1,V2是直和,再证明两个互为子集。此处有公式: η = ( η − A η ) + A η \eta=(\eta-A\eta)+A\eta η=(ηAη)+Aη

四、多个子空间的直和

定义

V 1 , V 2 , . . . , V s ≤ V V_{1},V_{2},...,V_{s}\leq V V1,V2,...,VsV,若 ∀ η ∈ V 1 + V 2 + . . . + V s , ∃ \forall \eta\in V_{1}+V_{2}+...+V_{s},\exist ηV1+V2+...+Vs,唯一的 η i ∈ V i , i = 1 , 2 , . . . , s \eta_{i}\in V_{i},i=1,2,...,s ηiVi,i=1,2,...,s,使得 η = ∑ i = 1 s η i \eta = \sum_{i=1}^{s}\eta_{i} η=i=1sηi,则称 V 1 ⊕ V 2 ⊕ . . . ⊕ V s V_{1}\oplus V_{2}\oplus ... \oplus V_{s} V1V2...Vs是直和

定理

V 1 , V 2 , . . . , V s ≤ V V_{1},V_{2},...,V_{s}\leq V V1,V2,...,VsV,则下面命题是等价的:
1. V 1 + V 2 + . . . + V s 是 直 和 V_{1}+V_{2}+...+V_{s}是直和 V1+V2+...+Vs
2. θ \theta θ的表示方式是唯一的
3. V j ∩ ∑ i ≠ j = { θ } V_{j}\cap\sum_{i\neq j}=\{\theta\} Vji=j={θ}
4. d i m ∑ i = 1 V i s = ∑ i = 1 s d i m V i dim\sum_{i=1}V_{i}^{s}=\sum_{i=1}^{s}dimV_{i} dimi=1Vis=i=1sdimVi
5.将 V 1 , V 2 , . . . , V s V_{1},V_{2},...,V_{s} V1,V2,...,Vs的基合在一起就是 V 1 + V 2 + . . . + V s V_{1}+V_{2}+...+V_{s} V1+V2+...+Vs的基

注意此处不能把命题三改成对任意 i ≠ j , V i ∩ V j = { θ } i\neq j, V_{i}\cap V_{j}=\{\theta\} i=j,ViVj={θ},下举例说明。
如果考虑在xOy平面上,x轴、y轴和y=x三条直线上点构成的三个子空间,虽然满足条件 i ≠ j , V i ∩ V j = { θ } i\neq j, V_{i}\cap V_{j}=\{\theta\} i=j,ViVj={θ},但它们的和并不是直和。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值