矩阵论:子空间的交与和
前言:子空间的定义已经在上一篇文章中介绍过,此处不再重复。
一、关于子空间的几何理解
例题
R 3 R^{3} R3中的集合:
V 1 = { ( x , y , z ) ∣ 3 x + 2 y − 5 z = 1 } V_{1} = \{(x,y,z)|3x+2y-5z=1\} V1={(x,y,z)∣3x+2y−5z=1}
V 2 = { ( x , y , z ) ∣ 3 x + 2 y + 5 z = 0 } V_{2} = \{(x,y,z)|3x+2y+5z=0\} V2={(x,y,z)∣3x+2y+5z=0}
判断 V 1 V_{1} V1和 V 2 V_{2} V2是否为 R 3 R^{3} R3的子空间
V
1
V_{1}
V1不是子空间,因为它对于数乘不封闭。反例:
α
=
(
1
3
,
0
,
0
)
\alpha = (\frac{1}{3}, 0,0)
α=(31,0,0),
β
=
2
α
\beta=2\alpha
β=2α,容易验证
α
\alpha
α在集合
V
1
V_{1}
V1中而
β
\beta
β不在。
对于
V
2
V_{2}
V2,可以将其看成一个齐次线性方程组的解空间,所以它是一个子空间。
定理
一般来说,有下面命题成立:
对于R上的线性空间 R n R^{n} Rn,如果其子空间V几何上可以表示为过 R n R^{n} Rn原点的超平面,则V是 R n R^{n} Rn的子空间。
这一命题的含义实际上是:V是n元线性齐次方程的解空间。
二、空间的和运算
定理
如果是普通的集合中交、并的运算,我们有以下定理成立:
对于线性空间V的两个子空间 V 1 , V 2 V_{1}, V_{2} V1,V2, V 1 ∪ V 2 V_{1}\cup V_{2} V1∪V2不是V的子空间, V 1 ∩ V 2 V_{1}\cap V_{2} V1∩V2是V的子空间。
证明比较容易,这里省略。
定义
为了弥补集合并运算不能构造子空间的遗憾,我们定义子空间的“和运算”来作为与交运算相对的运算。
假设 V 1 , V 2 ⊆ V V_{1},V_{2}\subseteq V V1,V2⊆V,定义:
V 1 ∩ V 2 = { η ∈ V ∣ η ∈ V 1 ∧ η ∈ V 2 } V_{1}\cap V_{2}=\{\eta\in V| \eta\in V_{1}\wedge \eta\in V_{2}\} V1∩V2={η∈V∣η∈V1∧η∈V2}
V 1 + V 2 = { ∃ η 1 ∈ V 1 , η 2 ∈ V 2 , s . t . η = η 1 + η 2 } V_{1}+V_{2}=\{\exists \eta_{1}\in V_{1}, \eta_{2}\in V_{2},s.t.\ \eta=\eta_{1}+\eta_{2}\} V1+V2={∃η1∈V1,η2∈V2,s.t. η=η1+η2}
此时,有以下定理成立:
V 1 ∩ V 2 , V 1 + V 2 V_{1}\cap V_{2}, V_{1}+V_{2} V1∩V2,V1+V2是V的子空间,并且有: V 1 ∪ V 2 ⊆ V 1 + V 2 V_{1}\cup V_{2}\subseteq V_{1}+V_{2} V1∪V2⊆V1+V2成立。
对于和运算,有以下命题成立:
若 V 1 = L ( α 1 , α 2 , . . . , α s ) , V 2 = L ( β 1 , β 2 , . . . , β n ) V_{1}=L(\alpha_{1}, \alpha_{2},...,\alpha_{s}),\ V_{2}=L(\beta_{1},\beta_{2},...,\beta_{n}) V1=L(α1,α2,...,αs), V2=L(β1,β2,...,βn),则: V 1 + V 2 = L ( α 1 , α 2 , . . . , α s , β 1 , β 2 , . . . , β n ) V_{1}+V_{2}=L(\alpha_{1},\alpha_{2},...,\alpha_{s},\beta_{1},\beta_{2},...,\beta_{n}) V1+V2=L(α1,α2,...,αs,β1,β2,...,βn)。
证明
只要证明两边相互包含即可。
1.左边
⊆
\subseteq
⊆右边
根据和运算的定义,对空间
V
1
∪
V
2
V_{1}\cup V_{2}
V1∪V2有:
∀
η
∈
V
1
+
V
2
,
∃
η
1
∈
V
1
,
η
2
∈
V
2
,
s
.
t
η
=
η
1
+
η
2
\forall \eta \in V_{1}+V_{2},\exists \eta_{1}\in V_{1},\eta_{2}\in V_{2},s.t \ \eta=\eta_{1}+\eta_{2}
∀η∈V1+V2,∃η1∈V1,η2∈V2,s.t η=η1+η2,所以左边
⊆
\subseteq
⊆右边。
2.右边
⊆
\subseteq
⊆左边
对于
L
(
α
1
,
α
2
,
.
.
.
,
α
s
,
β
1
,
β
2
,
.
.
.
,
β
n
)
L(\alpha_{1},\alpha_{2},...,\alpha_{s},\beta_{1},\beta_{2},...,\beta_{n})
L(α1,α2,...,αs,β1,β2,...,βn)内任一元素,可以用
α
\alpha
α和
β
\beta
β表示,所以右边
s
u
b
s
e
t
e
q
subseteq
subseteq左边。
证毕
三、维数定理
假设 V 1 , V 2 ≤ V V_{1},V_{2}\leq V V1,V2≤V,有 d i m ( V 1 + V 2 ) = d i m V 1 + d i m V 2 − d i m ( V 1 ∩ V 2 ) dim(V_{1}+V_{2})=dimV_{1}+dimV_{2}-dim(V_{1}\cap V_{2}) dim(V1+V2)=dimV1+dimV2−dim(V1∩V2)
证明:
推荐阅读此博客的证明。
例题
已知 A = ( 1 1 1 1 1 − 1 2 2 3 1 4 4 ) , B = ( 1 2 1 1 2 1 2 2 ) , V 1 = { x ∈ F 4 ∣ A x = θ } , V 2 = { x ∈ F 4 ∣ B x = θ } A=\begin{pmatrix} 1&1&1&1\\1&-1&2&2\\3&1&4&4\end{pmatrix},B=\begin{pmatrix}1&2&1&1\\2&1&2&2\end{pmatrix},V_{1}=\{x\in F^{4}|Ax=\theta\},V_{2}=\{x\in F^{4}|Bx=\theta\} A=⎝⎛1131−11124124⎠⎞,B=(12211212),V1={x∈F4∣Ax=θ},V2={x∈F4∣Bx=θ},求 V 1 ∩ V 2 , V 1 + V 2 V_{1}\cap V_{2},V_{1}+V_{2} V1∩V2,V1+V2的基和维数。( θ \theta θ表示零向量)
思路:
先求
V
1
∩
V
2
V_{1}\cap V_{2}
V1∩V2的基和维数。利用分块矩阵将空间
V
1
∩
V
2
V_{1}\cap V_{2}
V1∩V2的基写作
(
A
B
)
x
=
θ
\begin{pmatrix}A\\B\end{pmatrix}x=\theta
(AB)x=θ。
定义
设 V 1 , V 2 ≤ V V_{1},V_{2}\leq V V1,V2≤V,若 ∀ η ∈ V 1 + V 2 , ∃ \forall \eta \in V_{1}+V_{2},\exists ∀η∈V1+V2,∃唯一的 η 1 ∈ V 1 , η 2 ∈ V 2 \eta_{1}\in V_{1},\eta_{2}\in V_{2} η1∈V1,η2∈V2使得 η = η 1 + η 2 \eta=\eta_{1}+\eta_{2} η=η1+η2。则称 V 1 + V 2 V_{1}+V_{2} V1+V2是直和,记作 V 1 ⊕ V 2 V_{1}\oplus V_{2} V1⊕V2.
定理
设 V 1 , V 2 ≤ V V_{1},V_{2}\leq V V1,V2≤V,则下述命题是等价的
1. V 1 ⊕ V 2 V_{1}\oplus V_{2} V1⊕V2是直和
2. θ \theta θ的表示方式是唯一的
3. V 1 ∩ V 2 = θ V_{1}\cap V_{2}=\theta V1∩V2=θ
4. d i m ( V 1 + V 2 ) = d i m V 1 + d i m V 2 dim(V_{1}+V_{2})=dimV_{1}+dimV_{2} dim(V1+V2)=dimV1+dimV2
5.将 V 1 , V 2 V_{1},V_{2} V1,V2的基合在一起就是 V 1 ⊕ V 2 V_{1}\oplus V_{2} V1⊕V2的基
下面给出部分证明:
2
→
3
2\rightarrow3
2→3:假设
η
∈
V
1
∩
V
2
\eta \in V_{1}\cap V_{2}
η∈V1∩V2,由于
V
1
,
V
2
V_{1},V_{2}
V1,V2都是子空间,所以有
η
∈
V
1
,
−
η
∈
V
2
\eta\in V_{1},-\eta\in V_{2}
η∈V1,−η∈V2,所以得到零向量的表达方式:
θ
=
η
+
(
−
η
)
\theta=\eta + (-\eta)
θ=η+(−η),由于零向量的表达方式是唯一的,所以
η
=
θ
\eta = \theta
η=θ。
3
→
4
、
4
→
3
3\rightarrow4、4\rightarrow3
3→4、4→3:由于
d
i
m
{
θ
}
=
0
dim\{\theta\}=0
dim{θ}=0,根据维数定理可知其成立。
3
→
1
3\rightarrow1
3→1:假设存在
α
1
∈
V
1
,
β
1
∈
V
2
;
α
2
∈
V
1
,
β
2
∈
V
2
\alpha_{1} \in V_{1},\beta_{1} \in V_{2}; \alpha_{2}\in V_{1},\beta_{2}\in V_{2}
α1∈V1,β1∈V2;α2∈V1,β2∈V2,使得
α
1
+
β
1
=
α
2
+
β
2
\alpha_{1}+\beta_{1}=\alpha_{2}+\beta_{2}
α1+β1=α2+β2。移项得
α
1
−
α
2
=
β
1
−
β
2
\alpha_{1}-\alpha_{2}=\beta_{1}-\beta_{2}
α1−α2=β1−β2,由于
V
1
∩
V
2
=
{
θ
}
V_{1}\cap V_{2}=\{\theta\}
V1∩V2={θ},可知
α
1
=
α
2
,
β
1
=
β
2
\alpha_{1}=\alpha_{2},\beta_{1}=\beta_{2}
α1=α2,β1=β2。
例题
已知 F n × n F^{n\times n} Fn×n的子空间
V 1 = { A ∣ A T = A } , V 2 = { A ∣ A T = − A } V_{1}=\{A|A^{T}=A\},V_{2}=\{A|A^{T}=-A\} V1={A∣AT=A},V2={A∣AT=−A},证明: F n × n = V 1 ⊕ V 2 F^{n\times n}=V_{1}\oplus V_{2} Fn×n=V1⊕V2
证明:
首先需要证明
V
1
,
V
2
V_{1},V_{2}
V1,V2的和是直和,可以使用
V
1
∩
V
2
=
{
θ
}
V_{1}\cap V_{2} =\{\theta\}
V1∩V2={θ}证明。然后证明
F
n
×
n
=
V
1
⊕
V
2
F^{n\times n}=V_{1}\oplus V_{2}
Fn×n=V1⊕V2时,可以采用两边互为子集的方式,注意此处有公式:
A
=
1
2
(
A
+
A
T
)
+
1
2
(
A
−
A
T
)
A = \frac{1}{2}(A+A^{T})+\frac{1}{2}(A-A^{T})
A=21(A+AT)+21(A−AT)
设 A ∈ F n × n A\in F^{n\times n} A∈Fn×n,且 A 2 = A A^{2}=A A2=A
V 1 = { x ∈ F n ∣ A x = θ } , V 2 = { x ∈ F n ∣ A x = x } V_{1}=\{x\in F^{n}|Ax=\theta\},V_{2}=\{x\in F^{n}|Ax=x\} V1={x∈Fn∣Ax=θ},V2={x∈Fn∣Ax=x}
证明 F n = V 1 ⊕ V 2 F^{n}=V_{1}\oplus V_{2} Fn=V1⊕V2
证明:
还是首先证明
V
1
,
V
2
V_{1},V_{2}
V1,V2是直和,再证明两个互为子集。此处有公式:
η
=
(
η
−
A
η
)
+
A
η
\eta=(\eta-A\eta)+A\eta
η=(η−Aη)+Aη
四、多个子空间的直和
定义
设 V 1 , V 2 , . . . , V s ≤ V V_{1},V_{2},...,V_{s}\leq V V1,V2,...,Vs≤V,若 ∀ η ∈ V 1 + V 2 + . . . + V s , ∃ \forall \eta\in V_{1}+V_{2}+...+V_{s},\exist ∀η∈V1+V2+...+Vs,∃唯一的 η i ∈ V i , i = 1 , 2 , . . . , s \eta_{i}\in V_{i},i=1,2,...,s ηi∈Vi,i=1,2,...,s,使得 η = ∑ i = 1 s η i \eta = \sum_{i=1}^{s}\eta_{i} η=∑i=1sηi,则称 V 1 ⊕ V 2 ⊕ . . . ⊕ V s V_{1}\oplus V_{2}\oplus ... \oplus V_{s} V1⊕V2⊕...⊕Vs是直和
定理
设 V 1 , V 2 , . . . , V s ≤ V V_{1},V_{2},...,V_{s}\leq V V1,V2,...,Vs≤V,则下面命题是等价的:
1. V 1 + V 2 + . . . + V s 是 直 和 V_{1}+V_{2}+...+V_{s}是直和 V1+V2+...+Vs是直和
2. θ \theta θ的表示方式是唯一的
3. V j ∩ ∑ i ≠ j = { θ } V_{j}\cap\sum_{i\neq j}=\{\theta\} Vj∩∑i=j={θ}
4. d i m ∑ i = 1 V i s = ∑ i = 1 s d i m V i dim\sum_{i=1}V_{i}^{s}=\sum_{i=1}^{s}dimV_{i} dim∑i=1Vis=∑i=1sdimVi
5.将 V 1 , V 2 , . . . , V s V_{1},V_{2},...,V_{s} V1,V2,...,Vs的基合在一起就是 V 1 + V 2 + . . . + V s V_{1}+V_{2}+...+V_{s} V1+V2+...+Vs的基
注意此处不能把命题三改成对任意
i
≠
j
,
V
i
∩
V
j
=
{
θ
}
i\neq j, V_{i}\cap V_{j}=\{\theta\}
i=j,Vi∩Vj={θ},下举例说明。
如果考虑在xOy平面上,x轴、y轴和y=x三条直线上点构成的三个子空间,虽然满足条件
i
≠
j
,
V
i
∩
V
j
=
{
θ
}
i\neq j, V_{i}\cap V_{j}=\{\theta\}
i=j,Vi∩Vj={θ},但它们的和并不是直和。