中心极限定理、置信区间

中心极限定理
中心极限定理是概率论中的一组定理。 中心极限定理说明,在适当的条件下,大量相互独立随机变量的均值经适当标准化后依分布收敛于正态分布 。 这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从正态分布的条件。
历史

中心极限定理的第一版被法国 数学家棣莫弗发现,他在1733年发表的卓越论文中使用正态分布去估计大量抛掷硬币出现正面次数的分布。 这个超越时代的成果险些被历史遗忘,所幸著名法国数学家拉普拉斯在1812年发表的巨著Théorie Analytique des Probabilités中拯救了这个默默无名的理论。

拉普拉斯扩展了棣莫弗的理论,指出二项分布可用正态分布逼近。 但同棣莫弗一样, 拉普拉斯的发现在当时并未引起很大反响。 直到十九世纪末中心极限定理的重要性才被世人所知。 1901年,俄国数学家里雅普诺夫用更普通的随机变量定义中心极限定理并在数学上进行了精确的证明。 如今,中心极限定理被认为是(非正式地) 概率论中的首席定理。
棣莫佛-拉普拉斯定理
在这里插入图片描述
用正态分布逼近二项分布
棣莫佛-拉普拉斯(de Moivre - Laplace)定理是中央极限定理的最初版本,讨论了服从二项分布的随机变量序列。 它指出,参数为n , p的二项分布以np为均值、 np(1-p)为方差的正态分布为极限。

置信区间

置信区间是指由样本统计量所构造的总体参数的估计区间。在统计学中,一个概率样本的置信区间(Confidence interval)是对这个样本的某个总体参数的区间估计。置信区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度,其给出的是被测量参数的测量值的可信程度,即前面所要求的“一个概率”。 点估计与区间估计: 以生活中的买双色球彩票为例:点估计就是买一张双色球中奖的概率;而区间估计就是买一砸彩票,这一砸里面有一个中奖的概率。 置信区间是指由样本统计量所构造的总体参数的估计区间,展现的是这个参数的真实值落在测量值(推测值)的周围的可信程度。我们可以使用[a, b]表示样本估计总体平均值的误差范围的区间,[a, b]就被称作置信区间。
同时,我们选择这个置信区间,目的是为了让“a和b之间包含总体平均值”这一结果具有特定的概率,就是置信水平。
在这里插入图片描述

上图中:样本均值以95%的概率落入区间[-2, 2]
参考:
维基百科
http://open.163.com/special/Khan/khstatistics.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
中心极限定理置信区间是统计学中两个重的概念,它们之间有密的关系。 中心极限理(Central Limit Theorem)指出,当样本量足够大时,无论总体分布形态如何,样本均值分布将近似服从正态分布。这意味着,对于足够大的样本,样本均值的抽样分布将集中在总体均值周围,并且具有对称的钟形曲线。 置信区间是进行统计推断时用于估计总体参数的范围。根据中心极限定理,当样本量足够大时,对于总体均值的抽样分布近似服从正态分布。基于这个性质,我们可以使用样本均值的抽样分布来构建置信区间。 构建置信区间的一种常见方法是使用样本均值和标准误差。标准误差是总体标准差除以样本量的平方根,它反映了样本均值的不确定性。在给定置信水平(如95%)下,我们可以根据正态分布的性质计算出相应的临界值,然后将样本均值与临界值相结合来构建置信区间。 因此,中心极限定理为我们提供了构建置信区间的基础。它告诉我们,当样本量足够大时,样本均值的分布将近似正态分布,这样我们可以基于正态分布的性质来计算置信区间。通过置信区间,我们可以对总体参数进行估计,并给出估计结果的不确定性范围。 总结起来,中心极限定理提供了样本均值近似服从正态分布的性质,而置信区间利用这个性质来进行估计和推断。中心极限定理为我们提供了一种有效的方法来构建置信区间,并在统计推断中提供了有关总体参数的可靠估计范围。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值