动手学深度学习Task7

一、优化算法进阶
二、word2vec
三、词嵌入进阶

一、优化算法进阶
在 Section 11.4 中,我们提到,目标函数有关自变量的梯度代表了目标函数在自变量当前位置下降最快的方向。因此,梯度下降也叫作最陡下降(steepest descent)。在每次迭代中,梯度下降根据自变量当前位置,沿着当前位置的梯度更新自变量。然而,如果自变量的迭代方向仅仅取决于自变量当前位置,这可能会带来一些问题。对于noisy gradient,我们需要谨慎的选取学习率和batch size, 来控制梯度方差和收敛的结果。
gt=∂w1|Bt|∑i∈Btf(xi,wt−1)=1|Bt|∑i∈Btgi,t−1.

在二阶优化中,我们使用Hessian matrix的逆矩阵(或者pseudo inverse)来左乘梯度向量 i.e.Δx=H−1g ,这样的做法称为precondition,相当于将 H 映射为一个单位矩阵,拥有分布均匀的Spectrum,也即我们去优化的等价标函数的Hessian matrix为良好的identity matrix。

与Section 11.4一节中不同,这里将 x21 系数从 1 减小到了 0.1 。下面实现基于这个目标函数的梯度下降,并演示使用学习率为 0.4 时自变量的迭代轨迹。

AdaGrad
在之前介绍过的优化算法中,目标函数自变量的每一个元素在相同时间步都使用同一个学习率来自我迭代。举个例子,假设目标函数为 f ,自变量为一个二维向量 [x1,x2]⊤ ,该向量中每一个元素在迭代时都使用相同的学习率。例如,在学习率为 η 的梯度下降中,元素 x1 和 x2 都使用相同的学习率 η 来自我迭代:

x1←x1−η∂f∂x1,x2←x2−η∂f∂x2.

在“动量法”一节里我们看到当 x1 和 x2 的梯度值有较大差别时,需要选择足够小的学习率使得自变量在梯度值较大的维度上不发散。但这样会导致自变量在梯度值较小的维度上迭代过慢。动量法依赖指数加权移动平均使得自变量的更新方向更加一致,从而降低发散的可能。本节我们介绍AdaGrad算法,它根据自变量在每个维度的梯度值的大小来调整各个维度上的学习率,从而避免统一的学习率难以适应所有维度的问题 [1]。

二、word2vec
f(x)->y
在 NLP 中,把 x 看做一个句子里的一个词语,y 是这个词语的上下文词语,那么这里的 f,便是 NLP 中经常出现的『语言模型』(language model),这个模型的目的,就是判断 (x,y) 这个样本,是否符合自然语言的法则,更通俗点说就是:词语x和词语y放在一起,是不是人话。

Word2vec 正是来源于这个思想,但它的最终目的,不是要把 f 训练得多么完美,而是只关心模型训练完后的副产物——模型参数(这里特指神经网络的权重),并将这些参数,作为输入 x 的某种向量化的表示,这个向量便叫做——词向量(这里看不懂没关系,下一节我们详细剖析)。

我们来看个例子,如何用 Word2vec 寻找相似词:

对于一句话:『她们 夸 吴彦祖 帅 到 没朋友』,如果输入 x 是『吴彦祖』,那么 y 可以是『她们』、『夸』、『帅』、『没朋友』这些词
现有另一句话:『她们 夸 我 帅 到 没朋友』,如果输入 x 是『我』,那么不难发现,这里的上下文 y 跟上面一句话一样
从而 f(吴彦祖) = f(我) = y,所以大数据告诉我们:我 = 吴彦祖(完美的结论)
3.2. Skip-gram 和 CBOW 模型
上面我们提到了语言模型

如果是用一个词语作为输入,来预测它周围的上下文,那这个模型叫做『Skip-gram 模型』
而如果是拿一个词语的上下文作为输入,来预测这个词语本身,则是 『CBOW 模型』
3.2.1 Skip-gram 和 CBOW 的简单情形
我们先来看个最简单的例子。上面说到, y 是 x 的上下文,所以 y 只取上下文里一个词语的时候,语言模型就变成:

用当前词 x 预测它的下一个词 y
但如上面所说,一般的数学模型只接受数值型输入,这里的 x 该怎么表示呢? 显然不能用 Word2vec,因为这是我们训练完模型的产物,现在我们想要的是 x 的一个原始输入形式。

答案是:one-hot encoder

所谓 one-hot encoder,其思想跟特征工程里处理类别变量的 one-hot 一样(参考我的前作『数据挖掘比赛通用框架』、『深挖One-hot和Dummy背后的玄机』)。本质上是用一个只含一个 1、其他都是 0 的向量来唯一表示词语。

我举个例子,假设全世界所有的词语总共有 V 个,这 V 个词语有自己的先后顺序,假设『吴彦祖』这个词是第1个词,『我』这个单词是第2个词,那么『吴彦祖』就可以表示为一个 V 维全零向量、把第1个位置的0变成1,而『我』同样表示为 V 维全零向量、把第2个位置的0变成1。这样,每个词语都可以找到属于自己的唯一表示。

OK,那我们接下来就可以看看 Skip-gram 的网络结构了,x 就是上面提到的 one-hot encoder 形式的输入,y 是在这 V 个词上输出的概率,我们希望跟真实的 y 的 one-hot encoder 一样。

在这里插入图片描述
首先说明一点:隐层的激活函数其实是线性的,相当于没做任何处理(这也是 Word2vec 简化之前语言模型的独到之处),我们要训练这个神经网络,用反向传播算法,本质上是链式求导,在此不展开说明了,

当模型训练完后,最后得到的其实是神经网络的权重,比如现在输入一个 x 的 one-hot encoder: [1,0,0,…,0],对应刚说的那个词语『吴彦祖』,则在输入层到隐含层的权重里,只有对应 1 这个位置的权重被激活,这些权重的个数,跟隐含层节点数是一致的,从而这些权重组成一个向量 vx 来表示x,而因为每个词语的 one-hot encoder 里面 1 的位置是不同的,所以,这个向量 vx 就可以用来唯一表示 x。

注意:上面这段话说的就是 Word2vec 的精髓!!

此外,我们刚说了,输出 y 也是用 V 个节点表示的,对应V个词语,所以其实,我们把输出节点置成 [1,0,0,…,0],它也能表示『吴彦祖』这个单词,但是激活的是隐含层到输出层的权重,这些权重的个数,跟隐含层一样,也可以组成一个向量 vy,跟上面提到的 vx 维度一样,并且可以看做是词语『吴彦祖』的另一种词向量。而这两种词向量 vx 和 vy,正是 Mikolov 在论文里所提到的,『输入向量』和『输出向量』,一般我们用『输入向量』。

需要提到一点的是,这个词向量的维度(与隐含层节点数一致)一般情况下要远远小于词语总数 V 的大小,所以 Word2vec 本质上是一种降维操作——把词语从 one-hot encoder 形式的表示降维到 Word2vec 形式的表示。

三、词嵌入进阶

在“Word2Vec的实现”一节中,我们在小规模数据集上训练了一个 Word2Vec 词嵌入模型,并通过词向量的余弦相似度搜索近义词。虽然 Word2Vec 已经能够成功地将离散的单词转换为连续的词向量,并能一定程度上地保存词与词之间的近似关系,但 Word2Vec 模型仍不是完美的,它还可以被进一步地改进:

子词嵌入(subword embedding):FastText 以固定大小的 n-gram 形式将单词更细致地表示为了子词的集合,而 BPE (byte pair encoding) 算法则能根据语料库的统计信息,自动且动态地生成高频子词的集合;
GloVe 全局向量的词嵌入: 通过等价转换 Word2Vec 模型的条件概率公式,我们可以得到一个全局的损失函数表达,并在此基础上进一步优化模型。
实际中,我们常常在大规模的语料上训练这些词嵌入模型,并将预训练得到的词向量应用到下游的自然语言处理任务中。本节就将以 GloVe 模型为例,演示如何用预训练好的词向量来求近义词和类比词。
GloVe 全局向量的词嵌入
求近义词和类比词
求近义词
由于词向量空间中的余弦相似性可以衡量词语含义的相似性(为什么?),我们可以通过寻找空间中的 k 近邻,来查询单词的近义词。
求类比词
除了求近义词以外,我们还可以使用预训练词向量求词与词之间的类比关系,例如“man”之于“woman”相当于“son”之于“daughter”。求类比词问题可以定义为:对于类比关系中的4个词“ a 之于 b 相当于 c 之于 d ”,给定前3个词 a,b,c 求 d 。求类比词的思路是,搜索与 vec©+vec(b)−vec(a) 的结果向量最相似的词向量,其中 vec(w) 为 w 的词向量。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
为了在GPU上搭建动手深度学习pytorch环境,你需要按照以下步骤进行操作。 首先,你需要安装Anaconda来管理你的Python环境。你可以从官方网站 https://www.anaconda.com/ 下载适用于你操作系统的Anaconda安装程序。安装完成后,你可以使用conda命令创建一个新的环境。 接下来,你需要安装CUDA。CUDA是用于支持GPU计算的NVIDIA的并行计算平台和API模型。你可以从NVIDIA的官方网站下载适用于你的显卡型号的CUDA安装程序进行安装。 然后,你需要安装CUDNN。CUDNN是一个针对深度神经网络加速的GPU库。你可以从NVIDIA的开发者网站下载CUDNN并按照安装说明进行安装。 接下来,你可以使用conda命令来安装pytorch。你可以复制以下命令,在新建的环境中输入: ``` conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 安装完成后,你可以在命令行中输入python进入Python解释器环境,并导入torch模块来测试pytorch的安装。你可以使用以下代码进行测试: ```python import torch from __future__ import print_function x = torch.rand(5, 3) print(x) print(torch.cuda.is_available()) # 测试CUDA是否可用 ``` 这样,你就成功搭建了动手深度学习pytorch环境,并且可以在GPU上进行深度学习任务了。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [01 动手深度学习-配置环境pytorch](https://blog.csdn.net/qq_44653420/article/details/123883400)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值