pytorch学习-使用torch.nn模块自定义模型

使用nn.Module构建神经网络

完成模型的训练包括:参数求导、梯度计算、参数更新以及训练过程的控制

nn.Module是PyTorch提供的神经网络类,并在类中实现了网络各层的定义及前向计算与反向传播机制。
在实际使用时,如果想要实现某个神经网络,只需继承nn.Module,在初始化中定义模型结构与参数,在函数forward()中编写网络前向过程即可。


下面具体以一个由两个全连接层组成的感知机为例,介绍如何使用nn.Module构造模块化的神经网络
可以把代码的两个类分为四个步骤:

1.初始化层参数
2.定义层结构
3.定义所有网络层
4.定义完整的模型

import torch
from torch import nn

class Linear(nn.Module):
    def __init__(self, in_dim, out_dim):
        # 1.初始化层参数
        super(Linear, self).__init__()
        self.w = nn.Parameter(torch.randn(in_dim, out_dim))
        self.b = nn.Parameter(torch.randn(out_dim))

    def forward(self, x):
        # 2.定义层结构
        x = x.matmul(self.w)
        y = x + self.b.expand_as(x)
        return y

class Perception(nn.Module)
PyTorch是一个基于Python的科学计算库,主要针对深度学习任务。在PyTorch中,torch.nn是一个用于构建神经网络模型模块torch.nn模块提供了一系列神经网络层和函数,方便用户构建自定义的神经网络。用户可以通过继承torch.nn.Module类来定义自己的神经网络模型torch.nn模块中常用的类包括各种层(例如全连接层、卷积层、池化层和循环层等)、非线性激活函数和损失函数等。 在使用torch.nn模块构建神经网络时,用户需要实现模型的前向传播函数forward()。该函数定义了输入数据在神经网络中的流动方式,即通过层和函数的组合计算输出。在forward()函数中,用户可以使用已定义的层和函数进行计算,也可以实现自定义的操作。 torch.nn模块中的另一个重要概念是参数(parameter)。参数是模型中需要学习的变量,例如网络层的权重和偏置项。用户可以通过在模型中定义torch.nn.Parameter对象来创建参数,并在forward()函数中进行使用。 除了torch.nn模块外,PyTorch还提供了其他的工具和模块来辅助神经网络的训练和优化过程。例如torch.optim模块包含了各种优化算法,如随机梯度下降(SGD)、Adam等,用于更新模型中的参数。torch.utils.data模块提供了数据处理和加载的工具,方便用户使用自己的数据训练模型。 总之,torch.nn模块PyTorch中用于构建神经网络模型的重要组成部分。通过使用torch.nn的各种类和函数,用户可以方便地创建自己想要的神经网络结构,并利用PyTorch强大的计算能力和优化算法来训练和优化模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值