1. 逻辑功能区别
• 或门(OR gate):或门的逻辑功能是当输入中有一个或多个为高电平(1)时,输出为高电平(1);只有当所有输入都为低电平(0)时,输出才为低电平(0)。其逻辑表达式为Y = A + B(对于两输入或门)。
• 或非门(NOR gate):或非门是先进行或运算,然后再对或运算的结果取反。其逻辑表达式为Y=\overline{A + B}(对于两输入或非门)。
• 非门(NOT gate):非门的功能是对输入信号取反,即输入为高电平(1)时,输出为低电平(0);输入为低电平(0)时,输出为高电平(1)。
2. 为什么有时要用或非门加非门而不用或门
• 逻辑化简和实现的需求
• 在数字电路设计中,有时从逻辑表达式化简的结果来看,会自然地得到或非门和非门组合的形式。例如,在某些复杂的逻辑函数化简过程中,使用或非门和非门可能会使电路结构更简单、元件数量更少。
• 电路设计的一致性和模块性
• 在一些大规模集成电路设计中,可能只使用特定类型的门电路(如或非门和非门)来构建整个电路,以保持设计的一致性和模块性。这样在生产和调试过程中会更加方便。
• 特定技术和工艺的要求
• 在某些集成电路制造工艺中,或非门和非门的实现可能比单纯的或门更容易、更稳定或者占用更小的芯片面积。例如,在某些基于CMOS技术的电路设计中,或非门和非门的组合可以更好地利用CMOS的特性来降低功耗和提高速度。
总之,在实际的数字电路设计中,选择或非门加非门而不是直接用或门是由逻辑化简、电路设计的整体架构、制造工艺等多方面因素决定的。
问题二,为什么与非与非,不用与门
1. 逻辑化简和实现的便利性
• 在数字电路设计中,逻辑函数化简后有时会自然地呈现出与非 - 与非的形式。使用与非门来实现逻辑电路,在某些情况下可以减少所需门的数量,从而简化电路结构。例如,对于函数F = AB + CD,将其转换为与非 - 与非形式F=\overline{\overline{AB}\cdot\overline{CD}}后,只需要四个与非门就可以实现(两个与非门分别实现\overline{AB}和\overline{CD},另外两个与非门实现最终的逻辑),而如果直接用与门和或门来实现,可能需要更多的门电路。
2. 电路设计的一致性和模块化
• 在一些大规模集成电路设计中,为了保持设计的一致性和模块化,可能会选择只使用与非门来构建整个电路。这样在生产和调试过程中会更加方便。例如,在某些基于特定逻辑系列(如TTL或CMOS)的电路设计中,全部采用与非门可以使设计规则统一,便于电路的布局布线和故障排查。
3. 制造工艺和性能考虑
• 在某些集成电路制造工艺中,与非门的实现可能比与门更具优势。例如,在CMOS工艺中,与非门的电路结构在功耗、速度和芯片面积等方面可能表现得更好。与非门可以更好地利用CMOS晶体管的特性,减少静态功耗,提高电路的开关速度,并且在芯片上占用更小的面积。
总之,选择用与非门加与非门而不是直接用与门是由逻辑化简的结果、电路设计的整体架构、制造工艺以及性能要求等多方面因素共同决定的。