初步认识ECC

一、关于ECC的简单介绍

椭圆曲线密码算法(Elliptic Curve Cryptography, ECC)是一种基于椭圆曲线数学理论的公钥加密技术。与RSA等其他公钥密码算法相比,ECC提供了相当的安全级别但所需的密钥长度较小,这使得它成为许多现代加密应用中的首选。

 ECC原理简述

椭圆曲线密码学基于椭圆曲线上的离散对数问题。在椭圆曲线E上的点集合(包括无穷远点O)上定义一个加法运算,构成一个群。如果选取的椭圆曲线和加法运算满足某些条件,该群就是一个阿贝尔群,它的阶是一个大素数n。椭圆曲线上的离散对数问题是指在已知椭圆曲线上的两个点P和Q时,求解整数k,使得kP=Q(其中kP表示P点自身相加k次)。ECC的安全性建立在没有找到求解这个离散对数问题的有效算法上。

ECC相关数学知识

椭圆曲线密码学(ECC)的数学知识介绍


1. 椭圆曲线基础


椭圆曲线是满足特定方程的点集,这些点位于二维平面上。在密码学中,通常使用的椭圆曲线方程是 Weierstrass 标准方程:y^2 = x^3 + ax + b(其中a, b为常数)。


2. 群论与有限域


群是一个集合G和集合上的一个二元运算组成的代数结构,满足封闭性、结合性、单位元存在性和逆元存在性。在椭圆曲线密码学中,我们考虑椭圆曲线上的点以及一个特殊的“无穷远点”O。当我们定义一个特定的点加法时,椭圆曲线上的点和无穷远点O形成一个群。


有限域(也称为伽罗瓦域)是一个只包含有限个元素的域。在ECC中,我们通常在有限域上工作,特别是素数域Fp或特征为2的有限域F2^m。


3. 点加与倍点运算


点加是椭圆曲线群上的基本运算,它定义了两个点P和Q的和R。对于椭圆曲线上的任意一点P,还可以定义它的两倍点,即P与自身的和。这两种运算在ECC的密钥生成、加密和解密过程中都是必需的。


4. 离散对数问题


在椭圆曲线密码学中,离散对数问题是指:给定椭圆曲线上的两个点P和Q,找到一个整数n,使得Q = nP。这是ECC安全性的基础,因为在有限域上的椭圆曲线上,离散对数问题是困难的。


5. 椭圆曲线加密


ECC用于加密的基本思想是选择一条椭圆曲线E和曲线上的一个点G(基点),然后选择一个私钥k,计算公钥K = kG。加密过程涉及选择一个随机整数r,计算C1 = rG和C2 = rM + K(其中M是明文消息),然后发送(C1, C2)作为密文。解密过程则通过计算M = C2 - dC1(其中d是私钥k的逆元)来恢复明文。

 

6. 密钥生成与交换


在ECC中,密钥生成涉及选择一条安全的椭圆曲线和一个基点G。然后,生成一个随机数k作为私钥,计算公钥K = kG。密钥交换通常使用ECDH(Elliptic Curve Diffie-Hellman)协议,双方各自生成一个私钥并交换公钥,然后计算共享的秘密。


7. 安全性与攻击


ECC的安全性主要依赖于离散对数问题的困难性。然而,也存在一些针对ECC的攻击方法,如Pollard's rho算法、椭圆曲线离散对数问题的指数级算法等。为了保持安全性,需要选择足够大的椭圆曲线参数和合适的域。


8. 性能优化与实现


为了优化ECC的性能,可以采取一系列策略,如选择快速的点加和倍点算法(如Jacobian坐标、Projective坐标等)、使用预计算表来加速运算、选择适当的素数域或二进制域等。此外,硬件和软件的优化也可以显著提高ECC的性能。

与RSA相比的好处:

相对于RSA,ECC的另一个优势在于性能更好。RSA需要设置很长的密钥,才能保证算法的安全。而密钥越长,运算效率就越低。与RSA不同,ECC的密钥较短小,这就减少了计算开销,而且还提高了安全性能。

ECC还有第三个优于RSA的优点。由于ECC算法是基于超奇异的椭圆曲线同源密码术,破解难度更大,不太容易受到量子计算的关注。美国国家标准技术研究院(NIST)预测,一旦量子计算成为主流,我们今天所了解并在使用的公钥加密系统都将失效。

二、具体实现

ECC关键步骤

1 选择合适的椭圆曲线

选取一条适合加密的椭圆曲线,通常包括确定曲线的参数,如系数a, b和模数p。

# 1. 选择合适的椭圆曲线:这里使用SECP256k1
curve = SECP256k1


2 生成基点和阶

选取椭圆曲线上的一个点G,作为基点,并计算基点G的阶n,即最小的正整数k,使得kG=O(无穷远点)。

这里的代码需借助库实现:在Python中,可以使用ecdsa库来实现ECC算法。ecdsa是一个用于椭圆曲线数字签名算法的Python库,它实现了ECDSA(Elliptic Curve Digital Signature Algorithm)和ECDH(Elliptic Curve Diffie-Hellman)协议。


3 密钥生成与加密解密


密钥生成:选择一个随机的整数d(私钥),计算公钥Q=dG。公钥Q和私钥d一起构成了密钥对。

加密:选择一个随机的整数k,计算椭圆曲线上的点C1=kG和C2=kM(其中M是要加密的消息),则加密后的消息是(C1, C2)。

解密:使用私钥d,计算C1的d倍,即D1=dC1,然后计算原始消息M=D1-C2。

from ecdsa import SigningKey, VerifyingKey, SECP256k1

# ① 选取一条椭圆曲线SECP256k1并选取椭圆曲线上的一个点P作为基点
curve = ecdsa.curves.SECP256k1
G = curve.generator

# ② 选定一个较大的数k作为算法的私钥,并根据椭圆曲线的系数乘法Q=kP运算得到作为算法公钥的Q点
private_key = ecdsa.util.randrange(curve.order)
public_key = private_key * G

# ③ 加密:选择一个随机数r,将待加密的明文M生成密文C,其中C=(rP , M+rQ)
r = ecdsa.util.randrange(curve.order)
C = r * G, M + r * public_key

# ④ 解密:由于对解密者k已知且P、Q均为公开内容,故可执行操作 M+rQ-k(rP) = M,从上述信息中恢复出M的信息
M = C + private_key * C.x() - r * private_key * G.x()

4.验证签名

# 要加密的消息
message = b"Hello, ECC!"
 
# 签名消息
signature = sk.sign(message)
 
# 验证签名
assert vk.verify(signature, message)
print("签名验证成功")
 
# 尝试使用错误的私钥验证签名
wrong_sk = SigningKey.from_pem(sk.to_pem())
wrong_vk = wrong_sk.get_verifying_key()
assert not wrong_vk.verify(signature, message)
print("使用错误的私钥验证签名失败")

三、选取合适曲线

选择合适的椭圆曲线参数是确保椭圆曲线密码学(ECC)安全性的关键步骤。以下是选择合适的椭圆曲线参数时需要考虑的一些关键因素:


安全性要求:首先,需要明确安全性的需求。这涉及到选择足够大的椭圆曲线参数,以抵抗已知的攻击方法。一般来说,较大的域大小(即有限域GF(p)中的p的大小)和较大的椭圆曲线阶数(即椭圆曲线上点的数量)会增加安全性。


性能考虑:除了安全性,还需要考虑性能。较大的参数会增加计算复杂性,可能导致加密和解密操作变慢。因此,需要在安全性和性能之间找到平衡。


标准参数:可以选择一些已经被广泛接受和使用的标准参数。这些参数经过了多年的安全性检验,并且在各种实现中都有良好的性能表现。例如,NIST(美国国家标准与技术研究院)推荐的曲线参数(如P-256, P-384, P-521等)和SECG(高效密码学标准组)推荐的曲线参数都是常用的选择。


专利和知识产权:在选择椭圆曲线参数时,还需要考虑专利和知识产权问题。一些标准的椭圆曲线参数可能受到专利保护,因此在使用之前需要确保遵守相关的许可和专利要求。


参数验证:在选择椭圆曲线参数后,还需要进行参数验证。这包括验证参数是否满足椭圆曲线的定义条件,以及验证参数是否抵抗已知的攻击方法。


软件和硬件支持:考虑选择已经被广泛支持的椭圆曲线参数,这样在软件和硬件实现上会更加方便。许多加密库和协议都支持常见的标准椭圆曲线参数。

  • 17
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值