数学模型的相关概念及意义等理论内容

本文概括了《数学模型(第五版)》第一章的内容,介绍了数学模型作为原型信息压缩的替代品,分为物质模型和理想模型,其中数学模型是用数字、字母等构建的描述现实对象数量规律的结构。建模方法包括机理分析和测试分析,建模步骤涉及模型假设、求解、分析和检验。数学模型具有逼真性、可行性、渐进性和可转移性等特点,并广泛应用于人口模型、生态模型、工程设计、天气预报等多个领域。
摘要由CSDN通过智能技术生成

《数学模型(第五版)》姜启源、谢金星、叶俊的书籍第一章内容的概括总结。
1.原型、模型是一对对偶体。
(1)原型:现实生活中的实际对象。
(2)模型:对原型进行信息压缩的原型替代品。

2.按模型替代原型的方法来分类:
则模型可以分成:

  • 物质模型/形象模型

  • 理想模型/抽象模型

3.而物质模型又包括:
(1)直观模型(把原型按一定的比例进行变换,主要就是追求外观逼真)。
(2)物理模型(为了特殊目的,按与原型相似的原理构造模型,其不仅有原型外观,还可以用来做实验)。

4.理想模型包括:
(1)思维模型(是人对于原型的反复认知,把知识以经验的形式储存在大脑,根据思维/直觉做事(比如:开车))。
(2)符号模型(拥有一些符号的情况下,按一定的形式组合符号用来描述原型)。
(3)数学模型((大方向下的概念)又数字、字母及其他数学符号组成的,描述现实对象数量规律的数学公式、图形、算法)。

5.数学模型(详细描述下的概念):对于现实的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的教学工具,得到的一个数学结构。

6.数学模型的建模方法&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值