决策树(河南农业大学)

这篇博客介绍了决策树的基础知识,包括信息熵、信息增益、ID3算法,以及预剪枝和后剪枝的概念。通过实践操作,读者将学会如何在Python中使用sklearn库实现决策树进行鸢尾花分类任务。
摘要由CSDN通过智能技术生成

第1关:什么是决策树

任务描述
本关任务:根据本节课所学知识完成本关所设置的选择题。

第1题

AB

第2题

B

第2关:信息熵与信息增益

任务描述
本关任务:根据本关所学知识,完成calcInfoEntropy函数,calcHDA函数以及calcInfoGain函数。

相关知识
为了完成本关任务,你需要掌握:

信息熵
条件熵
信息增益

# 计算熵
def calcInfoEntropy(feature, label):
    '''
    计算信息熵
    :param feature:数据集中的特征
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ssaty.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值