集成学习与深度学习 加载模型方法

博客介绍了在尝试使用torch.load()加载pickle格式的模型时遇到的'pickle.UnpicklingError'错误。问题在于缺少持久化加载函数。解决方案是通过设置 torch.load() 的map_location参数来解决此问题,例如使用torch.load('model.pkl', map_location='cpu')。此博客评论区提供了这一解决方案。
摘要由CSDN通过智能技术生成

1. 集成学习

import joblib

joblib.load("model.pkl")

2.深度学习

用torch自带的load()

import torch

data = torch.load("model.pkl")

error:

pickle.UnpicklingError: A load persistent id instruction was encountered,but no persistent_load function was specified.

解决方法:用torch.load()

https://blog.csdn.net/The_Time_Runner/article/details/107991530 这篇博客上的评论找到解决方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值