sklearn 回归问题的评估指标

1. Root mean square error (RMSE):

\begin{equation} RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^m (y^i - \overset{\frown}y^i)^2} \end{equation}

2. Mean absolute error(MAE):

\begin{equation} MAE = \frac{1}{m} \sum_{i=1}^m | y^i - \overset{\frown}y^i | \end{equation}

 3.R-Square ($R^2$):

\begin{equation} R^2 = 1 - \frac{\sum(y^i - \overset{\frown}y^i)^2}{\sum(y^i - \bar{y})^2} \end{equation}

4.Median Absolute Deviation (MAD):

\begin{equation} MAD = \frac{1}{m} \sum_{i=1}^m median| y^i - \overset{\frown}y^i | \end{equation}

##########导入sklearn工具包##########
from sklearn import metrics
import numpy as np

RMSE = np.sqrt(mean_squared_error(y_true, y_predict))
MAE= mean_absolute_error(y_true, y_predict) 
R2= r2_score(y_true, y_predict)
MAD= median_absolute_error(y_true, y_predict)
    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值