使用numpy生成one-hot编码

本文介绍了一种使用numpy库的eye函数生成对角矩阵并进行one-hot编码的方法,同时也指出了该方法在面对非连续且差距大的索引值时的不合理之处,并提出可以使用sklearn库的one-hot编码函数来解决这一问题。
摘要由CSDN通过智能技术生成

借助numpy库的eye函数生成对角矩阵。通过索引list获取one-hot编码

import numpy as np
index_list = [1,0,3]
max_index = np.max(index_list) + 1
np.eye(max_index)[index_list) # 得到深度为4的one-hot编码

这里的one-hot编码方式根据索引值进行编码,当索引值非连续且差距很大,比如index_list=[1,0,11111]时,这种上述编码长度为11112,非常不合理。
也可以借助sklearn库的one-hot编码函数进行编码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值