hdu 3530(单调队列)

传送门
题解:
用一个单调不升的队列维护最大值,一个单调不减的队列维护最小值。如果不满足条件,后移答案区间左端点,取两个队列头指针的元素较小的一个(位置尽量靠前使区间尽量长)。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN=1e5+4;
int n,m,k;
int q1[MAXN],q2[MAXN],a[MAXN];
int st1,ed1,st2,ed2;
inline int read() {
    int x=0;char c=getchar();
    while (c<'0'||c>'9') c=getchar();
    while (c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
    return x;
}
int main() {
//  freopen("hdu 3530.in","r",stdin);
    while (~scanf("%d%d%d",&n,&m,&k)) {
        int ans=0,pos=0;
        for (register int i=1;i<=n;++i) a[i]=read();
        st1=st2=ed1=ed2=0;
        for (register int i=1;i<=n;++i) {
            while (st1<ed1&&a[q1[ed1-1]]<a[i]) --ed1;
            while (st2<ed2&&a[q2[ed2-1]]>a[i]) --ed2;
            q1[ed1++]=q2[ed2++]=i;
            while (st1<ed1&&st2<ed2&&a[q1[st1]]-a[q2[st2]]>k) {
                if (q1[st1]<q2[st2]) pos=q1[st1++];
                else pos=q2[st2++];
            }
            if (st1<ed1&&st2<ed2&&a[q1[st1]]-a[q2[st2]]>=m) ans=max(ans,i-pos);
        }
        printf("%d\n",ans);
    }
    return 0;
}
对于HDU4546问题,还可以使用优先队列(Priority Queue)来解决。以下是使用优先队列的解法思路: 1. 首先,将数组a进行排序,以便后续处理。 2. 创建一个优先队列(最小堆),用于存储组合之和的候选值。 3. 初始化优先队列,将初始情况(即前0个数的组合之和)加入队列。 4. 开始从1到n遍历数组a的元素,对于每个元素a[i],将当前队列中的所有候选值取出,分别加上a[i],然后再将加和的结果作为新的候选值加入队列。 5. 重复步骤4直到遍历完所有元素。 6. 当队列的大小超过k时,将队列中的最小值弹出。 7. 最后,队列中的所有候选值之和即为前k小的组合之和。 以下是使用优先队列解决HDU4546问题的代码示例: ```cpp #include <iostream> #include <vector> #include <queue> #include <functional> using namespace std; int main() { int n, k; cin >> n >> k; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } sort(a.begin(), a.end()); // 对数组a进行排序 priority_queue<long long, vector<long long>, greater<long long>> pq; // 最小堆 pq.push(0); // 初始情况,前0个数的组合之和为0 for (int i = 0; i < n; i++) { long long num = pq.top(); // 取出当前队列中的最小值 pq.pop(); for (int j = i + 1; j <= n; j++) { pq.push(num + a[i]); // 将所有加和结果作为新的候选值加入队列 num += a[i]; } if (pq.size() > k) { pq.pop(); // 当队列大小超过k时,弹出最小值 } } long long sum = 0; while (!pq.empty()) { sum += pq.top(); // 求队列中所有候选值之和 pq.pop(); } cout << sum << endl; return 0; } ``` 使用优先队列的方法可以有效地找到前k小的组合之和,时间复杂度为O(nklog(k))。希望这个解法对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值