问题描述
给一个长度为 N 的一维格子和一些炸弹的位置,请你计算 “最大总破坏指数”。 每个炸弹都有向左和向右的破坏力,如果一个炸弹向左和向右的破坏力分别为 L 和 R, 那么该炸弹将炸毁 L+R+1 个格子(左边L个,炸弹所在格子,右边R个)。 破坏指数的计算方式为:所有炸弹炸毁的格子数的乘积。假设第 i 个炸弹炸毁了 Xi个格子, 那么总破坏指数就是 X1∗X2∗....Xm。 现在告诉你每个炸弹的位置,你需要计算 最大的总破坏指数,注意:每个格子最多只允许被炸一次。
输入描述
多组测试数据,第一行为一个整数 T(T≤11)。 每组测试数据第一行为两个整数 N,M(1≤N≤2000,1≤M≤N),分别表示格子总数和炸弹总数 。 第二行是 M 个互不相同的数表示每个炸弹所在的位置。
输出描述
对于每组测试数据,输出 floor(10^6 * log2(最大破坏指数)) (floor表示向下取整)。
输入样例
2 10 2 0 9 10 3 0 4 8
输出样例
4643856 5169925
先不考虑将结果乘以 1e6。 设 dp[i] 为从前 i 个格子的状态可以获得的最大破坏指数。那么我们可以枚举每个炸弹,该炸弹向左延伸的距离和向又延伸的距离。 设第 i 个炸弹破坏区间为 [l, r], 则 dp[r] = dp[l - 1] * log2(r - l + 1)。答案就是 dp[n - 1]。不要忘记最后要向下取整。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
int n, m;
int pos[2010];
double dp[2010];
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
double ans = 0;
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++)
{
scanf("%d", &pos[i]);
pos[i] ++;
}
sort(pos + 1, pos + 1 + m);
pos[m + 1] = 2005;
memset(dp, 0, sizeof(dp));
dp[pos[1]] = log(pos[1]) / log(2);
for (int i = pos[1] + 1; i < pos[2]; i++)
dp[i] = log(i) / log(2);
for (int i = 2; i <= m; i++)
for (int j = pos[i - 1]; j < pos[i]; j++)
for (int k = pos[i]; k < pos[i + 1]; k++)
{
dp[k] = max(dp[k], dp[j] + log(k - j) / log(2));
}
printf("%I64d\n", (long long)(dp[n] * 1e6));
}
return 0;
}